
Adobe® AIR™ for
JavaScript

Developers
Pocket Guide

Mike Chambers, Daniel Dura,
Dragos Georgita, and Kevin Hoyt

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Adobe® AIR™ for JavaScript Developers Pocket Guide
by Mike Chambers, Daniel Dura, Dragos Georgita, and Kevin Hoyt

Copyright © 2008 O’Reilly Media. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for most
titles (http://safari.oreilly.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Steve Weiss
Copy Editor: Audrey Doyle

Indexer: Joe Wizda
Cover Designer: Karen Mont-
gomery
Illustrator: Robert Romano

Printing History:
April 2008: First Edition

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. The Pocket Reference/Pocket Guide series designations,
Adobe AIR for JavaScript Developers, the image of a red-footed
falcon and related trade dress are trademarks of O’Reilly Media,
Inc.

Many of the designations uses by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc.
was aware of a trademark claim, the designations have been prin-
ted in caps or initial caps

While every precaution has been taken in the preparation of this
book, the publisher and authors assume no responsibility for er-
rors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 978-0-596-51837-0

[T]

1207246041

http://safari.oreilly.com

Adobe Developer Library, a copublishing partnership
between O’Reilly Media Inc., and Adobe Systems, Inc., is the
authoritative resource for developers using Adobe technolo-
gies. These comprehensive resources offer learning solutions
to help developers create cutting-edge interactive web appli-
cations that can reach virtually anyone on any platform.

With top-quality books and innovative online resources cov-
ering the latest tools for rich-Internet application develop-
ment, the Adobe Developer Library delivers expert training
straight from the source. Topics include ActionScript, Adobe
Flex®, Adobe Flash®, and Adobe Acrobat®.

Get the latest news about books, online resources, and more
at http://adobedeveloperlibrary.com.

,adobe-front.5535 Page 5 Thursday, April 3, 2008 2:28 PM

Contents

Preface vii

Chapter 1: Introduction to Adobe AIR 1
A Short History of Web Applications 1
Problems with Delivering Applications via the Browser 4
Introducing Adobe AIR 6
Primary Adobe AIR Technologies 7

Chapter 2: Getting Started with Adobe AIR Development 19
What Do You Need to Develop Adobe AIR Applications? 19
Uninstalling Prerelease Versions of Adobe AIR 21
Installing Adobe AIR 23
Uninstalling Adobe AIR 24
Setting Up the Adobe AIR SDK and Command-Line Tools 24
Creating a Simple AIR Application with HTML and JavaScript 29
Testing the Application 36
Packaging and Deploying the AIR Application 40

Chapter 3: Working with JavaScript and HTML Within Adobe AIR 49
WebKit Within Adobe AIR 49
JavaScript within Adobe AIR 52
AIR Implementation of Functionality 53
Security Model 60
Using JavaScript Frameworks 68
Troubleshooting AIR Applications 78

Chapter 4: Adobe AIR Mini-Cookbook 83
Application Deployment 83

v

Application Chrome 88
Windowing 91
File API 101
File Pickers 120
Service and Server Monitoring 127
Online/Offline 132
Drag-and-Drop 136
Embedded Database 142
Command-Line Arguments 156
Networking 158
Sound 166

Appendix: AIR JavaScript Aliases 169

Index 177

vi | Table of Contents

Preface

This book provides a quick introduction to developing appli-
cations for Adobe AIR. Adobe AIR is a new cross-platform
desktop application runtime created by Adobe. Although
Adobe AIR allows both Flash- and HTML-based application
development, this book focuses on building applications using
HTML and JavaScript.

The book gives an overview of Adobe AIR, shows how to set
up your development environment, and discusses new Adobe
AIR functionality and APIs. Once you have finished reading
this book, you should have a good understanding of what
Adobe AIR is as well as how to build HTML and JavaScript
applications for it.

Adobe AIR Runtime Naming Conventions
Adobe AIR allows developers to leverage a number of web
technologies to deploy web applications to the desktop. In-
deed, there are so many technologies that it can be difficult to
keep track of them all. Table 1 lists the terms used in the book,
and defines each one.

Table 1. AIR runtime naming conventions

Name Meaning

Adobe AIR The cross-platform desktop runtime that enables the running of
Adobe AIR applications.

vii

Name Meaning

Adobe AIR ap-
plication

An application built with Flash, HTML, and/or PDF that runs on top
of Adobe AIR.

Adobe Flash Any content contained within a SWF 9 file format that runs in the
Adobe Flash Player or Adobe AIR.

ActionScript The ECMAScript-based programming language used to program
Flash content. Unless otherwise noted, all references to ActionScript
in this book refer to ActionScript 3.

HTML Standard web-based markup language used to create and lay out
web pages.

JavaScript Web-based implementation of ECMAScript used to program con-
tent within HTML applications.

PDF Short for Portable Document Format, a technology that allows for
seamless distribution and display of electronic documents.

Adobe Flex
Framework

An XML- and ActionScript-based framework designed to make de-
veloping Flash-based Rich Internet Applications (RIAs) easy.

Adobe Flex
Builder

An Eclipse-based IDE used to build Flash-based RIAs using Flex and
ActionScript.

What This Book Covers
This book gives a general overview of Adobe AIR, shows how
to set up your development environment to start building ap-
plications, provides an overview of the HTML and JavaScript
engines within the runtime, and shows how to perform a num-
ber of common programming tasks within Adobe AIR.

The following is a partial list of features and functionality in-
cluded in the Adobe AIR 1.0 release:

• Mac support (OS X 10.4.9 and later; Intel and PPC)

• Windows support (Windows Vista, Windows XP SP2,
and Windows 2000 SP4)

• File I/O API

• SQLite embedded database

viii | Preface

• All functionality within Flash Player 9, including complete
network stack

• Windowing APIs

• Command-line tools (ADL and ADT)

• HTML support within Flash-based content

• Top-level HTML applications

• Flash content within HTML applications

• ActionScript/JavaScript script bridging

• Flex Builder and Flex Framework support for authoring
Adobe AIR applications

• Application command-line arguments

• Drag-and-drop support

• Rich clipboard access

• Native menu API

• Full-screen support

• Application update API

• Online/offline detection API

• Encrypted local data stores

• Presence APIs

• File type associations

• Application icons

• PDF support

• Right-click and contextual menu control

• System notifications

We will cover these features in more detail throughout the rest
of the book.

Errors and Errata
This book is written against the 1.0 release of Adobe AIR, and
was finalized after the runtime was released. Thus, all infor-
mation in the book should be correct for Adobe AIR 1.0.

Preface | ix

However, it is possible that there will be updates to the run-
time, or that there are errors within the book. If something in
the book does not seem correct, check the online documenta-
tion for the latest information.

You can find the latest information and documentation on
Adobe AIR at:

http://www.adobe.com/go/air

You should also check the book’s errata web site for the latest
updates and corrections:

http://www.adobe.com/go/airjavascriptpocketguide

Audience for This Book
We hope this book is for you, but just to be sure, let’s discuss
some of the assumptions that we made, as well as what types
of developers the book targets.

Who This Book Is For
This book is for developers interested in leveraging HTML and
JavaScript to build and deploy applications to the desktop via
Adobe AIR. If you don’t have any experience with developing
with HTML and JavaScript, we suggest that you spend some
time getting up to speed on these technologies.

What Does This Book Assume?
The book assumes that the reader has at least a basic familiarity
with creating HTML-based web applications and content us-
ing HTML and JavaScript.

You should be familiar with web technologies such as HTML,
JavaScript, Ajax, and CSS, as well as general web development
concepts.

x | Preface

http://www.adobe.com/go/air
http://www.adobe.com/go/airjavascriptpocketguide

Who This Book Is Not For
Although it is possible to create Flash- and Flex-based appli-
cations with Adobe AIR, this book does not go into any detail
on Flash- and Flex-focused AIR application development. If
you are a Flash or Flex developer interested in building AIR
applications, this book can provide a good introduction and
overview of AIR and its functionality, but you should view the
Adobe AIR documentation and articles available from the
Adobe AIR web site for a more Flash/Flex-focused discussion.

How This Book Is Organized
This book contains the following chapters, as well as one ap-
pendix:

Chapter 1, Introduction to Adobe AIR
Provides a general overview of what Adobe AIR is and the
types of applications it targets

Chapter 2, Getting Started with Adobe AIR Development
Covers tips on starting your Adobe AIR development, and
the steps for creating your first Adobe AIR application
from the command line

Chapter 3, Working with JavaScript and HTML Within Adobe
AIR

Gives an overview of the HTML and JavaScript runtime
environments within Adobe AIR, and provides an intro-
duction to using JavaScript to access Adobe AIR func-
tionality and APIs

Chapter 4, Adobe AIR Mini-Cookbook
Provides tips and tricks for accomplishing common tasks
within Adobe AIR applications, presented in the O’Reilly
Cookbook format

Appendix A
Lists JavaScript aliases to Adobe AIR APIs

Preface | xi

How to Use This Book
You can use this book as an introduction to and overview of
Adobe AIR, and as a step-by-step guide to getting started with
Adobe AIR application development. Although it may be
tempting to jump ahead to specific sections, it is strongly sug-
gested that you at least read the first two chapters, which
provide an overview of the runtime and discuss how to set up
your development environment for building Adobe AIR appli-
cations. This will make it much easier to then jump into the
specific areas of runtime functionality that may interest you.

Once you have read the book and understand the basics of how
to build an Adobe AIR application with HTML and JavaScript,
then you can use the book as a reference, referring to specific
sections when you need to know how to tackle a specific prob-
lem. In particular, the Cookbook sections should prove useful
as you develop your applications.

Finally, this book is just an introduction to Adobe AIR and
does not cover all of the features and functionality included
within it. It is meant to complement, but not replace, the ex-
tensive and in-depth documentation on the runtime provided
by Adobe. Make sure to explore the documentation to ensure
that you’re familiar with all of the APIs and functionality not
covered in this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and
keyboard accelerators (such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames,
file extensions, pathnames, directories, and Unix utilities

xii | Preface

Constant width
Indicates commands, options, switches, variables, attrib-
utes, keys, functions, types, classes, namespaces, meth-
ods, modules, properties, parameters, values, objects,
events, event handlers, XML tags, HTML tags, macros,
the contents of files, and the output from commands

Constant width bold
Shows commands or other text that should be typed lit-
erally by the user

Constant width italic
Shows text that should be replaced with user-supplied
values

License and Code Examples
This work, including all text and code samples, is licensed un-
der the Creative Commons Attribution-Noncommercial-Share
Alike 3.0 License.

To view a copy of this license, visit http://creativecommons.org/
licenses/by-nc-sa/3.0/; or send a letter to Creative Commons,
543 Howard St., 5th Floor, San Francisco, California, 94105,
USA.

You can find more information on Creative Commons at http://
www.creativecommons.org.

Support and More Information

Accessing the Book Online
You can always find the latest information about this book, as
well as download a free electronic version of it, from the book’s
web site at:

http://www.adobe.com/go/airjavascriptpocketguide

Preface | xiii

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.creativecommons.org
http://www.creativecommons.org
http://www.adobe.com/go/airjavascriptpocketguide

Online Adobe AIR Resources
Although Adobe AIR is a new technology, there are already a
number of resources where you can find more information on
Adobe AIR and RIA development.

Official AIR site
This is the primary web site for information, downloads,
and documentation on AIR:

http://www.adobe.com/go/air

Adobe AIR Developer FAQ
This is the official Adobe AIR FAQ, answering common
questions about AIR development:

http://www.adobe.com/go/airfaq

Adobe AIR Developer Center
This Developer Center provides articles, information, and
resources on developing applications for Adobe AIR:

http://www.adobe.com/go/airdevcenter

Developing Adobe AIR applications with JavaScript
Here’s where you’ll find the Adobe AIR JavaScript docu-
mentation and API reference:

http://www.adobe.com/go/learn_air_html_jslr

Adobe AIR documentation
Visit this web site for complete Adobe AIR documenta-
tion:

http://www.adobe.com/go/airdocs

Adobe AIR Developer Center for HTML and Ajax
This Developer Center provides articles, tutorials, and
whitepapers on using HTML and JavaScript to develop
applications for Adobe AIR:

http://www.adobe.com/go/airajaxdevcenter

Adobe AIR Forum
This is the official Adobe forum for discussing the devel-
opment of applications for Adobe AIR:

http://www.adobe.com/go/airforums

xiv | Preface

http://www.adobe.com/go/air
http://www.adobe.com/go/airfaq
http://www.adobe.com/go/airdevcenter
http://www.adobe.com/go/learn_air_html_jslr
http://www.adobe.com/go/airdocs
http://www.adobe.com/go/airajaxdevcenter
http://www.adobe.com/go/airforums

Adobe AIR coders mailing list
This is a mailing list for discussing Adobe AIR application
development:

http://www.adobe.com/go/airlist

Mike Chambers’ weblog
One of the authors of this book, Mike Chambers is a
member of the Adobe AIR team who posts frequently on
Adobe AIR:

http://www.adobe.com/go/mikechambers

MXNA Adobe AIR Smart Category
The Adobe AIR Smart Category lists any discussions
about Adobe AIR within the Adobe online development
community:

http://www.adobe.com/go/airmxna

Ajaxian.com (http://ajaxian.com)
This is an Ajax news site with information, tips, tricks,
and the latest news on developing with JavaScript and
Ajax techniques:

http://www.ajaxian.com

Adobe Flex Developer Center
This Developer Center provides articles, information, and
resources on working with the Flex Framework:

http://www.adobe.com/go/flexdevcenter

Flex coders mailing list
This is a popular mailing list for discussing development
using the Flex Framework:

http://tech.groups.yahoo.com/group/flexcoders/

Universal Desktop Weblog
This is Ryan Stewart’s weblog, which focuses on the latest
developments in the world of RIAs:

http://blogs.zdnet.com/Stewart/

Preface | xv

http://www.adobe.com/go/airlist
http://www.adobe.com/go/mikechambers
http://www.adobe.com/go/airmxna
http://ajaxian.com
http://ajaxian.com
http://www.ajaxian.com
http://www.adobe.com/go/flexdevcenter
http://tech.groups.yahoo.com/group/flexcoders/
http://blogs.zdnet.com/Stewart/

About the Authors

Mike Chambers
Mike Chambers has spent the past eight years building appli-
cations that target the Flash runtime. During that time, he has
worked with numerous technologies, including Flash, Gener-
ator, .NET, Central, Flex, and Ajax. He is currently the prin-
cipal product manager for developer relations for the Flash
platform. He has written and spoken extensively on Flash and
RIA development and is coauthor of Adobe Apollo for Flex De-
velopers Pocket Guide, Flash Enabled: Flash Design and Devel-
opment for Devices, and Generator and Flash Demystified.

Mike received his master’s degree in international economics
and European studies from the John Hopkins School of Ad-
vanced International Studies (SAIS) in 1998.

When he is not programming, Mike can be found playing Halo,
trying to recover from his World of Warcraft addiction, work-
ing on scale models, or hanging out with his two daughters,
Isabel and Aubrey, and his wife Cathy.

Mike maintains a weblog at http://www.mikechambers.com/.

Daniel Dura
Currently based in San Francisco, Daniel Dura is a Platform
Evangelist at Adobe, focusing on Adobe AIR and Flash. Before
joining Macromedia (which merged with Adobe in 2005),
Daniel and his brother Josh founded Dura Media LLC, a RIA
development company based in Dallas. While at Adobe, he
was a member of the Central and Flex teams, as well as a prod-
uct manager for developer relations.

Daniel has given presentations on Flash, Apollo, and Flex all
over the world at user group meetings, conferences, and pretty
much anywhere someone has been willing to listen. Outside of

xvi | Preface

http://www.mikechambers.com/

his day job, he enjoys general aviation and is well on his way
to earning his Private Pilot license.

Dragos Georgita
Based in Bucharest, Romania, Dragos Georgita is part of the
Adobe AIR engineering staff, leading a group that focuses on
JavaScript and Ajax support in the runtime. After graduating
from the University Politehnica of Bucharest, he worked for a
couple of companies and became interested in web technolo-
gies. Dragos has worked with both client and server technolo-
gies on different platforms and was part of the team that
combined the best of the two words in the form of a search-
engine-friendly Ajax framework.

Dragos also spent time trying to make the lives of web devel-
opers easier by working on automation tools for IDEs such as
Adobe Dreamweaver. That period was important in develop-
ing his customer-oriented focus and attention to detail.

While part of the Adobe AIR team, Dragos is thrilled to be able
to leverage his knowledge into the new breed of RIAs and to
look for ways to improve the workflows for Ajax developers
developing for Adobe AIR.

Outside of his day job, he enjoys spending time with his family
and his 1-year-old daughter, Clara.

Kevin Hoyt
Kevin Hoyt is a Platform Evangelist with Adobe, who likes
moving, breaking, blurring, and jumping over the lines of con-
ventional technology. He seeks out every opportunity to con-
gregate with other like-minded developers, and explores ways
to escape any lines that form a box. Pushing the envelope of
what technology can do, and how people perceive and interact
with it, is his passion.

A frequent traveler, Kevin can generally be found deep in code
while speaking with customers at conferences, in front of user

Preface | xvii

groups, or anywhere else they will give him time in front of an
audience. The rest of the time he enjoys spending with his
family at home in Parker, Colorado, and indulging his pho-
tography habit.

This current chapter in Kevin’s career started when he accepted
a job with Allaire Corporation, circa 2000, with focus on Cold-
Fusion and JRun. Allaire was purchased by Macromedia in
2001, at which point he was able to unleash the latent designer
within and help to promote the value of RIAs. Adobe acquired
Macromedia in 2005, and Kevin now finds himself helping the
company and its customers make sense of Adobe’s increasingly
large stable of products.

Acknowledgments
The authors would like to thank Mark Nichoson and Alisa Po-
polizio from Adobe and Steve Weiss and Michele Filshie from
O’Reilly for helping to make this book possible in an incredibly
short amount of time, and Editor Audrey Doyle. We would
also like to thank Adrian Ludwig, Laurel Reitman, Oliver
Goldman, Chris Brichford, Lucas Adamski, Rob Dixon, and
Jeff Swartz, all from Adobe, for their input and work on the
book.

Also, the authors would like to thank everyone on the Adobe
AIR team for all of their dedication and hard work in getting a
1.0 runtime out the door.

xviii | Preface

CHAPTER 1

Introduction to Adobe AIR

Adobe AIR is a cross-platform desktop runtime created by
Adobe that allows web developers to use web technologies to
build and deploy Rich Internet Applications (RIAs) and web
applications to the desktop.

NOTE
During its development cycle, Adobe AIR was referred
to in public by its code name of “Apollo”.

To better understand what Adobe AIR enables, and which
problems it tries to address, it is useful to first take a look at
the (relatively short) history of web applications.

A Short History of Web Applications
Over the past couple of years, there has been an accelerating
trend of applications moving from the desktop to the web
browser. This has been driven by a number of factors, which
include:

• Growth of the Internet as a communication medium

• Relative ease of deployment of web applications

1

• Ability to target multiple operating systems via the brows-
er

• Maturity of higher-level client technologies, such as the
browser and the Flash Player runtime

Early web applications were built primarily with HTML and
JavaScript, which, for the most part, relied heavily on client/
server interactions and page refreshes. This page refresh model
was consistent with the document-based metaphor for which
the browser was originally designed, but provided a relatively
poor user experience when displaying applications.

With the maturation of the Flash Player runtime, however, and
more recently with Ajax-type functionality in the browser, it
became possible for developers to begin to break away from
page-based application flows. Developers began to offer richer
application experiences via the browser. In a whitepaper from
March 2002, Macromedia coined the term rich Internet appli-
cation to describe these new types of applications in browsers,
which “blend content, application logic and communica-
tions ... to make the Internet more usable and enjoyable.”
These applications provided richer, more desktop-like experi-
ences, while still retaining the core cross-platform nature of the
Web:

Internet applications are all about reach. The promise of
the web is one of content and applications anywhere, re-
gardless of the platform or device. Rich clients must
embrace and support all popular desktop operating sys-
tems, as well as the broadest range of emerging device
platforms such as smart phones, PDAs, set-top boxes,
game consoles, and Internet appliances.

NOTE
You can find the complete whitepaper and more infor-
mation on RIAs at http://download.macromedia.com/
pub/flash/whitepapers/richclient.pdf.

The paper goes on to list some features that define RIAs:

2 | Chapter 1: Introduction to Adobe AIR

http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf

• Provide an efficient, high-performance runtime for exe-
cuting code, content, and communications

• Integrate content, communications, and application in-
terfaces into a common environment

• Provide powerful and extensible object models for inter-
activity

• Enable rapid application development through compo-
nents and reuse

• Enable the use of web and data services provided by ap-
plication servers

• Embrace connected and disconnected clients

• Enable easy deployment on multiple platforms and devi-
ces

This movement toward providing richer, more desktop-like
application experiences in the browser (enabled by the Flash
Player runtime, and more recently by Ajax) has led to an ex-
plosion of web applications.

Today, the web has firmly established itself as an application
deployment platform that offers benefits to both developers
and end-users. Some of these benefits include the ability to:

• Target multiple platforms and operating systems

• Develop with relatively high-level programming and lay-
out languages

• Allow end-users to access their applications and data from
virtually any Internet-connected computer

• Easily push application updates to users

The growth of web applications can be seen in both the Web
2.0 trend, which consists almost entirely of web-based appli-
cations and APIs, and the adoption of web applications as a
core business model by major companies and organizations.

A Short History of Web Applications | 3

Problems with Delivering Applications via the
Browser
As web applications have become more complex, they have
begun to push the boundaries of both the capabilities of the
browser and the usability of the application. As their popularity
grows, these issues become more apparent and important and
highlight the fact that there are still a number of significant
issues for both developers and end-users when deploying and
using applications within the browser.

The web browser was originally designed to deliver and display
HTML-based documents. Indeed, the basic design of the
browser has not shifted significantly from this purpose. This
fundamental conflict between document- and application-fo-
cused functionality creates a number of problems when de-
ploying applications via the browser.

Conflicting UI
Applications deployed via the browser have their own user in-
terface, which often conflicts with the user interface of the
browser. This application-within-an-application model often
results in user interfaces that conflict with and contradict each
other. This can lead to user confusion in the best cases, and
application failure in the worst cases. The classic example of
this is the browser’s Back button. The Back button makes sense
when browsing documents, but it does not always make sense
in the context of an application. Although a number of solu-
tions attempt to solve this problem, they are applied to appli-
cations inconsistently, and users may not know whether a
specific application supports the Back button or whether it will
force their application to unload, causing it to lose its state and
data.

4 | Chapter 1: Introduction to Adobe AIR

Distance from the Desktop
Due in part to the web security model (which restricts access
to the user’s machine), applications that run in the browser
often do not support the types of user interactions with the
operating system that people expect from applications. For ex-
ample, you cannot drag a file into a browser-based application
and have the application act on that file. Nor can the web ap-
plication interact with other applications on the user’s com-
puter.

RIAs have tried to improve on this by making richer, more
desktop-like interfaces possible in the browser, but they have
not been able to overcome the fundamental limitations and
separation of the browser from the desktop.

Primarily Online Experience
Because web applications are delivered from a server and do
not reside on the user’s machine, web applications are primar-
ily an online experience. Although attempts are underway to
make offline web-based applications possible, they do not pro-
vide a consistent development model and they fail to work
across different browsers, or they require users to install addi-
tional extensions to the browser. In addition, they often require
users to interact with and manage their application and brows-
er in complex and unexpected ways.

Lowest Common Denominator
Finally, as applications become richer and more complex and
begin to push the boundaries of JavaScript and DHTML, de-
velopers are increasingly faced with differences in browser
functionality and API implementations. Although these issues
can often be overcome with browser-specific code, they lead
to code that a) is more difficult to maintain and scale; and b)
takes time away from function-driven development of feature
functionality.

Problems with Delivering Applications via the Browser | 5

Although JavaScript frameworks are a popular way to help ad-
dress these issues, they can offer only the functionality provi-
ded by the browser, and often they resort to the lowest
common denominator of features among browsers to ease the
development model. The result for JavaScript- or DHTML-
based applications is a lowest common denominator user
experience and interaction model, as well as increased devel-
opment, testing, and deployment costs for the developer.

The fact that web applications have flourished despite these
drawbacks is a testament to the attractiveness of having a plat-
form with a good development model that has the ability to
deliver applications to multiple operating systems. A platform
that offered the reach and development model of the browser,
while providing the functionality and richness of a desktop ap-
plication, would provide the best of both worlds. This is what
Adobe AIR aims to provide.

Introducing Adobe AIR
So, what is Adobe AIR, and how can it make web application
development and deployment better?

Adobe AIR is a cross-operating-system runtime developed by
Adobe that allows web developers to leverage their existing
web development skills (such as Flash, Flex, HTML, Java-
Script, and PDF) to build and deploy RIAs and content to the
desktop.

In essence, Adobe AIR provides a platform in between the
desktop and the browser, which combines the reach and ease
of development of the web model with the functionality and
richness of the desktop model.

It is important to step back for a second and point out what
Adobe AIR is not. Adobe AIR is not a general desktop runtime
meant to compete with lower-level application runtimes.
Adobe AIR is coming from the Web to the desktop and is tar-
geted at web developers. Its primary use case is to enable web
applications and RIAs to be deployed to the desktop. This is a

6 | Chapter 1: Introduction to Adobe AIR

very important but subtle distinction, as enabling web appli-
cations and RIAs on the desktop is the primary use case driving
the Adobe AIR 1.0 feature set.

At its core, Adobe AIR is built on top of web technologies,
which allow web developers to develop for and deploy to the
desktop using the same technologies and development models
that they use today when deploying applications on the Web.

Primary Adobe AIR Technologies
Three primary technologies are included within Adobe AIR,
and they fall into two distinct categories: application technol-
ogies and document technologies.

Primary Application Technologies
Application technologies are technologies that can be used as
the basis of an application within Adobe AIR. Adobe AIR con-
tains two primary application technologies, HTML and Flash,
both of which can be used on their own to build and deploy
Adobe AIR applications.

HTML/JavaScript

The first core application technology within Adobe AIR is
HTML and JavaScript. This includes a full HTML rendering
engine, which includes support for:

• HTML

• JavaScript

• CSS

• XHTML

• Document Object Model (DOM)

Yes, you read that right. You don’t have to use Flash to build
Adobe AIR applications. You can build full-featured applica-
tions using just HTML and JavaScript. This usually surprises
some developers who expect Adobe AIR to focus only on Flash.

Primary Adobe AIR Technologies | 7

However, at its core, Adobe AIR is a runtime targeted at web
developers using web technologies—and what is more of a web
technology than HTML and JavaScript?

The HTML engine used within Adobe AIR is the open source
WebKit engine. This is the engine behind a number of brows-
ers, including KHTML on KDE and Safari on Mac OS X.

NOTE
You can find more information on the WebKit open
source project at http://www.webkit.org.

See Chapter 3 for a more in-depth discussion of WebKit
within Adobe AIR.

Adobe Flash

The second core application technology that Adobe AIR is
built on is Adobe Flash Player. Specifically, Adobe AIR is built
on top of Adobe Flash Player 9, which includes the ECMA-
Script-based ActionScript 3 scripting language, as well as the
open source Tamarin virtual machine (which will be used to
interpret JavaScript in future versions of Firefox).

NOTE
You can find more information on the open source Tam-
arin project on the Mozilla website, at http://www.mozil
la.org/projects/tamarin/.

Not only are all of the existing Flash Player APIs available
within Adobe AIR, but some of those APIs have also been ex-
panded and/or enhanced. Some of the functionality that the
Flash Player provides to Adobe AIR includes:

• Just-in-time Interpreted ActionScript engine for speedy
application performance

8 | Chapter 1: Introduction to Adobe AIR

http://www.webkit.org
http://www.mozilla.org/projects/tamarin/
http://www.mozilla.org/projects/tamarin/

• Full networking stack, including HTTP and RTMP, as
well as Binary and XML sockets

• Complete vector-based rendering engine and drawing
APIs

• Extensive multimedia support including bitmaps, vectors,
audio, and video

NOTE
Flash Player and ActionScript APIs are available to Java-
Script within Adobe AIR applications.

Of course, the Adobe Flex 3 RIA framework is built on top of
ActionScript 3, which means that you can take full advantage
of all of the features and functionality that Flex offers in order
to build Adobe AIR applications.

Primary Document Technologies
Document technologies within Adobe AIR refer to technolo-
gies that can be used for the rendering of and interaction with
electronic documents.

PDF and HTML are the primary document technologies avail-
able within Adobe AIR.

PDF

The Portable Document Format (PDF) is the web standard for
delivering and displaying electronic documents on the Web.

PDF functionality requires that Adobe Reader Version 8.1 be
installed on the user’s computer. If Adobe Reader 8.1 is instal-
led, Adobe AIR applications will be able to take full advantage
of all of the features that reader also exposes when running
within a web browser.

Primary Adobe AIR Technologies | 9

HTML

HTML was originally designed as a document technology, and
today it provides rich and robust control over content and text
layout and styling. HTML can be used as a document technol-
ogy within Adobe AIR—both within an existing HTML appli-
cation as well as within a Flash-based application.

What Does an Adobe AIR Application Contain?
Now that we know what technologies are available to appli-
cations running on top of Adobe AIR (see Figure 1-1), let’s look
at how those technologies can be combined to build an Adobe
AIR application.

Applications can consist of the following combinations of tech-
nologies:

• HTML/JavaScript only.

• HTML/JavaScript-based with Flash content.

• Flash only (including Flex).

• Flash-based with HTML content.

• All combinations can leverage PDF content.

Technology integration and script bridging

Because WebKit and Adobe Flash Player are included within
the runtime, they are integrated with each other on a very low
level. For example, when HTML is included within Flash con-
tent, it’s actually rendered via the Flash display pipeline,
which, among other things, means that anything you can do
to a bitmap within the Flash Player (blur, rotate, transform,
etc.) you can also do to HTML.

This low-level integration also applies to the script engines
within Adobe AIR that run ActionScript and JavaScript. Adobe
AIR enables script bridging between the two languages and
environments, which makes the following possible:

10 | Chapter 1: Introduction to Adobe AIR

• JavaScript code can call Adobe AIR, Flash Player, and Ac-
tionScript APIs.

• ActionScript code can call JavaScript APIs.

• ActionScript code can directly manipulate the HTML
DOM.

• Event registration can occur both ways between Java-
Script and ActionScript.

Note that the script bridging is “pass by reference.” So, when
passing an object instance from JavaScript to ActionScript (or

Socket services Web/HTTP services

Occasionally connected network

HTML

PDF

SWF

SWF

PDF

HTML

Adobe Integrated Runtime (AIR)

Mac Windows Linux
(post 1.0)

Network

Desktop

Figure 1-1. Adobe AIR application structure

Primary Adobe AIR Technologies | 11

vice versa), changes to that instance in one environment will
affect the instance in the other environment. Among other
things, this makes it possible to instantiate and use Flash Player
APIs directly from JavaScript, or to register and listen for
events.

This low-level script bridging between the two environments
makes it very easy for developers to create applications that are
a combination of both HTML and Flash.

NOTE
We cover accessing ActionScript and Adobe AIR APIs
from JavaScript in more detail in Chapter 3.

The result of all of this is that if you are a web developer using
HTML and JavaScript, you already have all of the skills neces-
sary to build an Adobe AIR application.

Adobe AIR Functionality
If Adobe AIR did not provide additional functionality and APIs
and simply allowed web applications to run on the desktop, it
would not be quite as compelling. Fortunately, Adobe AIR
provides a rich set of programming APIs, as well as close inte-
gration with the desktop that allows developers to build ap-
plications that take advantage of the fact that they’re running
on the user’s desktop.

Adobe AIR APIs

In addition to all of the functionality and APIs already offered
by the Flash Player and WebKit engine, Adobe AIR provides
additional functionality and APIs.

NOTE
Adobe AIR APIs are available to both ActionScript and
JavaScript.

12 | Chapter 1: Introduction to Adobe AIR

Some of the functionality includes, but is not limited to:

• Complete file I/O API

• Complete native windowing API

• Complete native menuing API

• Online/offline APIs to detect when service connectivity
has changed

• Complete control over application chrome

• Local storage/settings APIs

• System notification APIs that tie into OS-specific notifi-
cation mechanisms (not implemented in beta)

• Application update APIs

• SQLite embedded database

Note that functionality may be implemented directly within
the runtime or on the framework layer (in Flex and JavaScript),
or by using a combination of both.

Adobe AIR desktop integration

As discussed earlier, applications deployed via the browser
cannot always support the same user interactions as desktop
applications. This leads to applications that can be cumber-
some for the user to interact with, as they do not allow the types
of application interactions with which users are familiar.

Because an AIR application is a desktop application, it’s able
to provide the types of application interactions and experience
that users expect from an application. This functionality in-
cludes, but is not limited to:

• Appropriate install/uninstall rituals

• Desktop install touch points (such as shortcuts)

• Rich drag-and-drop support:

— Between the operating system and AIR applications

— Between AIR applications

— Between native applications and AIR applications

Primary Adobe AIR Technologies | 13

• Rich clipboard support

• System notifications

• Native icons

Once installed, an AIR application is just another native ap-
plication, which means that the operating system and users can
interact with it in the same way as they do with any other ap-
plication. For example, things such as OS-level application
prefetching and application switching work the same with
Adobe AIR applications as they do with native applications.

The goal is that the end-user does not need to know he is run-
ning an AIR application to be able to use it. He should be able
to interact with the application in the same way that he inter-
acts with any other application running on the desktop.

Security Model
All of this talk of APIs and desktop functionality brings up an
important question: what about security? Because Adobe AIR
applications have access to local resources, couldn’t they the-
oretically do something harmful?

First, it is important to note that Adobe AIR runs on top of the
operating system’s security layer. It does not provide any way
to get around or subvert this security. This is important, be-
cause it means Adobe AIR applications can work only within
the permissions given to them by the operating system—and
all current and any new security capabilities that the OS im-
plements.

To run an Adobe AIR application, a user must download the
application to the desktop, go through an install ritual, and
then launch the application. This is an experience very similar
to downloading and installing a desktop application. The sim-
ilarity is not an accident. Adobe AIR applications run in a
fundamentally different security content than applications that
run within a browser. It is a security context closer to that of a
native application than a web application.

14 | Chapter 1: Introduction to Adobe AIR

To enable safe browsing, the browser security model limits
all I/O capabilities of web applications. This includes restrict-
ing their ability to work with local resources, limiting what
network resources are accessible, and constraining their user
interface. The browser only allows applications to connect
with data that is associated with (usually, provided by) a server
located on a single web domain. In addition, the browser pro-
vides a trusted UI for users to understand the origin of the
application and control the state of the application. This model
is sufficient for applications that are connected to a single serv-
ice provider and rely on that service for data synchronization
and storage.

Some web developers have also stretched the browser security
model by integrating data from multiple sources and/or by ex-
perimenting with user interfaces that are inconsistent with the
browser chrome. Some of these applications require browser
plug-ins with capabilities that aren’t currently provided by
the browsers. Others take advantage of browser features such
as user notification or customized security configurations to
allow greater or lesser security to applications from specific
domains. These mechanisms allow web developers to build
more powerful applications, but they also are straining the
browser security model.

Rather than trying to extend the web browser so that it can act
as both a browser and a flexible application runtime, Adobe
AIR provides a flexible runtime for building applications using
web technologies. Adobe AIR allows web developers to build
applications that incorporate data from multiple sources, pro-
vide users with control over where and how their data is stored,
and produce user experiences that are not possible within the
browser’s user interface. Because Adobe AIR applications must
be installed on the desktop and require users to specifically
trust them, AIR applications can safely exercise these capabil-
ities. Browser-based applications cannot be granted these ca-
pabilities if the browser is to continue to fulfill its role as an
application for safely browsing any website on the Internet.

Primary Adobe AIR Technologies | 15

The Adobe AIR security model has a number of implications
for application developers and users. For application develop-
ers, it means that content within an installed AIR application
has capabilities that should not be exposed to any untrusted
content, including files from the Web. The runtime has a num-
ber of features that are designed to reinforce that distinction
and to help developers build applications using security best
practices.

This also means that users should not install Adobe AIR ap-
plications from sources they do not trust. This is very similar
to current practices for native desktop applications and for
browser plug-ins. Many applications and web content require
that a browser plug-in (such as Flash Player or Apple Quick-
Time) be installed in order to work. The Firefox browser has a
very accessible extensibility layer that essentially allows any
developer to extend the browser. These applications, plug-ins,
and extensions can do potentially harmful things and therefore
require that the user trust the source of the content.

Finally, one of the capabilities that will be included in the
Adobe AIR 1.0 release is the ability of the runtime to verify the
identity of an application’s publisher. Users should carefully
consider whether they want to trust the publisher of an appli-
cation, as well as whether they want to install an application
that hasn’t been signed.

Adobe AIR Development Toolset
One of the reasons web applications have been successful is
that they allow developers to easily deploy applications that
users can run regardless of which operating system they are on.
Whether on Mac, Windows, Linux, Solaris, or cell phones,
web applications provide reach.

However, success is based not only on cross-platform deploy-
ment, but also on the cross-platform nature of the development
environment. This ensures that any developer can develop for
—and leverage—the technology. Neither the runtime nor the
development tools are tied to a specific OS.

16 | Chapter 1: Introduction to Adobe AIR

The same is true of Adobe AIR. Not only does Adobe AIR pro-
vide the cross-platform reach of web applications, but, just as
importantly, Adobe AIR applications can be developed and
packaged on virtually any operating system.

Because Adobe AIR applications are built with existing web
technologies such as HTML and Flash, you can use the same
tools that you use to create browser-based content to create
Adobe AIR applications. The Adobe AIR SDK provides two
free command-line tools that make it possible to test, debug,
and package Adobe AIR applications with virtually any web
development and design tool.

ADL Allows Adobe AIR applications to be run without having to first install them

ADT Packages Adobe AIR applications into distributable installation packages

Although Adobe has added support to its own web develop-
ment and design tools for authoring Adobe AIR content (in-
cluding Adobe Flex Builder, Adobe Flash CS3, and Adobe
Dreamweaver), Adobe programs are not required to create ap-
plications. Using the Adobe AIR command-line tools, you can
create an AIR application with any web development tool. You
can use the same web development and design tools that you
are already using today.

NOTE
We will cover the development workflow in depth in
Chapter 2.

Is Adobe AIR the End of Web Applications in the Browser?
So, by this point, you may be saying to yourself, “Gee, Adobe
AIR sure sounds great! Why would anyone ever want to deploy
an application to the browser again? Is Adobe AIR the end of
web applications within the browser?”

No.

Primary Adobe AIR Technologies | 17

Let’s repeat that.

No.

Adobe AIR addresses many of the problems with deploying
web applications via the browser. However, there are still ad-
vantages to deploying applications via the browser. The fact
that there are so many web applications despite the disadvan-
tages discussed earlier is a testament to the advantages of
running within the browser. When those advantages outweigh
the disadvantages, developers will still deploy their applica-
tions via the web browser.

But it’s not necessarily an either/or question. Because Adobe
AIR applications are built using web technologies, the appli-
cation that you deploy via the web browser can be quickly
turned into an Adobe AIR application. You can have a web-
based version that provides the browser-based functionality,
and then also have an AIR-based version that takes advantage
of running on the desktop. Both versions could leverage the
same technologies, languages, and code base. Indeed, some of
the most popular early Adobe AIR applications, such as Fine-
tune Desktop and eBay Desktop, complement existing web
applications.

NOTE
You can find more information on Finetune Desktop at
http://www.finetune.com/desktop/.

You can find more information on eBay Desktop at
http://desktop.ebay.com.

Adobe AIR applications complement web applications. They
do not replace them.

18 | Chapter 1: Introduction to Adobe AIR

http://www.finetune.com/desktop/
http://desktop.ebay.com

CHAPTER 2

Getting Started with Adobe AIR
Development

This chapter discusses how to start developing applications for
Adobe AIR using HTML and JavaScript. It covers:

• Installing Adobe AIR

• Configuring the Adobe AIR SDK and command-line tools

• Creating your first AIR application

• Testing AIR applications

• Signing, packaging, and deploying AIR applications

Once you have completed this chapter, your environment for
developing AIR applications should be configured correctly,
and you should have a solid understanding of how to begin to
build, test, and deploy Adobe AIR applications.

What Do You Need to Develop Adobe AIR
Applications?
You need a number of items to begin developing AIR applica-
tions.

19

Adobe AIR Runtime
The Adobe AIR runtime is required to test application icons
and deploy AIR applications. You can download the runtime
for free from http://www.adobe.com/go/getair.

Adobe AIR SDK
The Adobe AIR SDK contains command-line tools, sample
files, and other resources to make it easier to develop AIR ap-
plications. In particular, we will be using the command-line
tools included in the SDK (ADL and ADT), which will allow
us to test, sign, and package our AIR applications from virtually
any development environment.

You can download the AIR SDK for free from http://
www.adobe.com/go/getairsdk.

HTML/JavaScript IDE or Editor
Building AIR applications with HTML and JavaScript requires
that you have a way to create the HTML and JavaScript files.
You can use any tool that supports creating and editing text
files (such as VIM or Notepad), although it’s recommended
that you use a tool that has richer support for working with
HTML and JavaScript files, such as Adobe Dreamweaver, Pan-
ic’s Coda, or Aptana Studio.

NOTE
You can find more information on Adobe Dreamweaver
at http://www.adobe.com/go/dreamweaver, Panic’s Coda
at http://www.panic.com/coda/, and Aptana Studio at
http://www.aptana.com.

20 | Chapter 2: Getting Started with Adobe AIR Development

http://www.adobe.com/go/getair
http://www.adobe.com/go/getairsdk
http://www.adobe.com/go/getairsdk
http://www.adobe.com/go/dreamweaver
http://www.panic.com/coda/
http://www.aptana.com

Supported Operating System
Although it is possible to develop and package AIR applica-
tions on virtually any operating system (including Linux), you
can test and deploy AIR applications only on operating systems
supported by Adobe AIR.

The supported operating systems are:

• Microsoft Windows 2000 SP4

• Microsoft Windows XP SP2

• Windows Vista Home Premium, Business, Ultimate, or
Enterprise

• Mac OS 10.4.910 and later (Intel and PowerPC)

NOTE
H.264 video playback on a Mac requires an Intel pro-
cessor.

Adobe is also currently working on adding support for Linux.

Uninstalling Prerelease Versions of Adobe AIR
If you have installed prerelease (alpha and/or beta) versions of
Adobe AIR, you may need to uninstall them before installing
the 1.0 runtime. However, whether this is strictly required can
be a little tricky to determine.

Table 2-1 lists the prerelease versions of Adobe AIR and wheth-
er they should be uninstalled before installing Adobe AIR 1.0.

Table 2-1. Prerelease versions of Adobe AIR

Version Uninstall?

Alpha Uninstall

Beta 1 Will be uninstalled automatically by the Adobe AIR 1.0 installer

Beta 2 No need to uninstall

Uninstalling Prerelease Versions of Adobe AIR | 21

Version Uninstall?

Beta 3 No need to uninstall

As Table 2-1 shows, the beta 2 and beta 3 runtimes can run
side by side with Adobe AIR 1.0. This allows you to run ap-
plications built for beta 2 and beta 3 until those betas expire.

If you do not know whether you have installed the alpha ver-
sion, it is a good idea to go ahead and uninstall all prerelease
versions of Adobe AIR.

Uninstalling on Windows
To uninstall all prerelease versions of Adobe AIR on Windows,
follow these steps:

1. In the Windows Start menu, select Settings→Control
Panel.

2. Select the Add or Remove Programs control panel.

3. Select the prerelease version of Adobe AIR to uninstall
(depending on the version, it may be referred to by its
code name of “Apollo”).

4. Click the Change/Remove button.

Uninstalling on Mac
Follow these steps to uninstall all prerelease versions of Adobe
AIR on the Mac. Depending on the prerelease version(s) of
Adobe AIR that you have installed, all steps may not apply.

1. Run the Adobe AIR Uninstaller in the /Users/<User>/Ap
plications directory (where <User> is your system user
account name).

2. Run the Adobe AIR Uninstaller in the /Applications di-
rectory.

3. Delete the /Library/Frameworks/Adobe Apollo.frame
work directory.

22 | Chapter 2: Getting Started with Adobe AIR Development

4. Delete the /Library/Receipts/Adobe Apollo.pkg file.

5. Empty the Trash.

Once you have done this, you are ready to install the 1.0 run-
time.

Installing Adobe AIR
Although it is not necessary to have Adobe AIR installed on
your computer to develop and test Adobe AIR applications, it
is useful to have it to try other AIR applications and to test your
final application’s deployment and packaging.

Installing the runtime is simple, and requires downloading and
running the Adobe AIR Installer.

1. Download the AIR Installer from http://
www.adobe.com/go/getair.

2. Launch the installer. On a Mac, you must first mount
the .dmg file, which contains the installer.

3. Follow the installation instructions.

NOTE
It is also possible to install Adobe AIR directly from the
runtime via express install. We will cover this in Chap-
ter 4.

As Adobe AIR is simply a runtime and not an application that
can be launched, the easiest way to confirm that it is installed
correctly is to try installing an AIR application. You can do this
by either downloading an AIR application and installing it, or
following the instructions later in the chapter to build a simple
AIR application.

Installing Adobe AIR | 23

http://www.adobe.com/go/getair
http://www.adobe.com/go/getair

NOTE
You can download sample AIR applications from
Adobe’s web site, at http://www.adobe.com/go/air_sam
ples.

Uninstalling Adobe AIR
The process for uninstalling Adobe AIR is different depending
on your operating system.

Uninstalling on Windows
On Windows, you can uninstall Adobe AIR the same way that
you uninstall any other application. Just select Adobe AIR in
the Add/Remove Programs section of the Control Panel.

Uninstalling on an Mac
The Adobe AIR installer places an uninstall application on the
user’s system when it is installed. To uninstall Adobe AIR,
launch the uninstaller named Adobe AIR Uninstaller which you
can find in the /Applications/Utilities directory.

Setting Up the Adobe AIR SDK and Command-
Line Tools
The Adobe AIR SDK beta contains tools, samples, and code
that make it easier to develop, test, and deploy applications. In
particular, it contains two command-line tools that we will use:

ADL
You use this tool to launch and test an Adobe AIR appli-
cation without having to install it first.

24 | Chapter 2: Getting Started with Adobe AIR Development

http://www.adobe.com/go/air_samples
http://www.adobe.com/go/air_samples

ADT
You use this tool to package and sign an AIR application
for distribution.

Installing the Adobe AIR SDK
To ease development, you should place the path to these files
within your system’s path. This will allow you to execute the
tools from anywhere on your system.

The command-line tools are located in the bin directory within
the SDK.

1. Download the Adobe AIR SDK from http://
www.adobe.com/go/getairsdk.

2. Open the SDK:

a) On Windows, uncompress the ZIP archive.

b) On Mac, mount the .dmg file.

3. Copy the contents of the SDK to your system (we will
refer to this location as <SDK_Path>).

NOTE
To run the command-line tools, you need to copy
only the bin, lib, and runtime directories from the
SDK.

It’s important that the bin, lib, and runtime di-
rectories within the SDK maintain their relative
paths to each other.

4. At this point, you should have at least the following three
directories: <SDK_Path>/bin, <SDK_Path>/lib, and
<SDK_Path>/runtime. The ADL and ADT command-line
tools are located in the bin directory.

Setting Up the Adobe AIR SDK and Command-Line Tools | 25

http://www.adobe.com/go/getairsdk
http://www.adobe.com/go/getairsdk

Placing the Command-Line Tools Within the System Path
All that is left to do is to place the <SDK_Path>/bin directory into
your system path so that you can execute the command-line
applications from anywhere on your system.

The instructions for this are different depending on whether
you are on a Mac or Windows-based system.

Windows
If you are on a Windows system, follow these steps:

1. Open the System Properties dialog box and click the
Advanced tab. You can find this in the System settings
in the Control Panel.

2. Click the Environment Variables button.

3. Select the PATH entry and then click the Edit button.
Add the path to the bin directory to the end of the current
variable value, separating it from previous values with a
semicolon:

; <SDK_Path>/bin

Figure 2-1 Editing PATH variables in Windows.

Figure 2-1. Placing command-line tools in the system path on
Windows

26 | Chapter 2: Getting Started with Adobe AIR Development

4. Click OK to close the panels.

To test the installation, open a new Windows Console
(Start→Run→Console), and type adt.

NOTE
Make sure you open a new Console window in order to
ensure the new PATH settings take affect.

You should see output similar to this:

usage:
 adt -package SIGNING_OPTIONS <air-file> <app-desc> FILE_ARGS
 adt -prepare <airi-file> <app-desc> FILE_ARGS
 adt -sign SIGNING_OPTIONS <airi-file> <air-file>
 adt -checkstore SIGNING_OPTIONS
 adt -certificate -cn <name> (-ou <org-unit>)?
(-o <org-name>)? (-c <country>)?
 <key-type> <pfx-file> <password>
 adt -help

SIGNING_OPTIONS: -storetype <type> (-keystore <store>)?
(-storepass <pass>)? (-keypass <pass>)? (-providerName
 <name>)? (-tsa <url>)?
FILE_ARGS: <fileOrDir>* ((-C <dir> <fileOrDir>+) |
(-e <file> <path>))* -C dir

This means the tools are configured correctly.

If you get an error stating that the file cannot be found, do the
following:

• Make sure the bin, lib, and runtime directories are inclu-
ded in the <SDK_Path> directory.

• Make sure you included the path to the <SDK_Path> direc-
tory correctly in the PATH environment variable.

• Make sure you opened a new Console window before
running the command.

Setting Up the Adobe AIR SDK and Command-Line Tools | 27

Mac
There are a number of ways to add the path to the AIR SDK to
your system path, depending on which shell you are using and
how you specify user environment variables.

The following instructions explain how to modify your PATH
environment variable if you are using the bash shell:

1. Open the Terminal program (/Applications/Utilities/Ter
minal). Make sure you’re in your home directory by typ-
ing cd and pressing Enter.

2. Check to see whether one of two files is present. Enter
the command ls -la.

3. Look for a file named either .profile or .bashrc.

4. If you have neither file, create the .profile file with the
command touch .profile.

5. Open the .profile or .bashrc file with a text editor.

6. Look for a line that looks similar to this:

export PATH=$PATH:/usr/local/bin

7. Add the path to the <SDK_Path>/bin directory to the end
of this line. For example, if <SDK_Path>/bin is at /airsdk/
bin, the export path should look something like this:

export PATH=$PATH:/usr/local/bin;/airsdk/bin

Make sure you separate the entries with a colon.

8. If the file is empty, add the following line:

export PATH=$PATH:/airsdk/bin

9. Save and close the file.

10. Run the command source .profile to load the new set-
tings (or .bashrc, if that is the file you edited).

11. Confirm that the new settings have taken effect by typing
echo $PATH and pressing Enter. Make sure the
<SDK_Path>/bin path is included in the output.

12. To test the installation, open a Terminal window and
type adt.

28 | Chapter 2: Getting Started with Adobe AIR Development

You should see output similar to this:

usage:
 adt -package SIGNING_OPTIONS <air-file> <app-desc>
 FILE_ARGS
 adt -prepare <airi-file> <app-desc> FILE_ARGS
 adt -sign SIGNING_OPTIONS <airi-file> <air-file>
 adt -checkstore SIGNING_OPTIONS
 adt -certificate -cn <name> (-ou <org-unit>)?
 (-o <org-name>)? (-c <country>)?
 <key-type> <pfx-file> <password>
 adt -help

SIGNING_OPTIONS: -storetype <type> (-keystore
<store>)? (-storepass <pass>)? (-keypass <pass>)?
(-providerName <name>)? (-tsa <url>)? FILE_ARGS:
<fileOrDir>* ((-C <dir> <fileOrDir>+) | (-e <file>
<path>))* -C

This means the tools are configured correctly.

If you get an error stating that the file cannot be found, do the
following:

• Make sure the bin, lib, and runtime directories are inclu-
ded in the <SDK_Path> directory.

• Make sure you included the path to <SDK_Path>/bin cor-
rectly in the PATH environment variable.

• Make sure you either opened a new Terminal window, or
ran source on your configuration file.

Creating a Simple AIR Application with HTML
and JavaScript
Now that we have installed and configured Adobe AIR and the
Adobe AIR SDK, we are ready to build our first AIR applica-
tion.

We will build a very simple “Hello World” example. Once we
have built and tested the application, our development envi-
ronment will be set up and ready to build more complex and
functional AIR applications.

Creating a Simple AIR Application with HTML and JavaScript | 29

Creating the Application Files
Every Adobe AIR application contains a minimum of two files.
The first file is the root content file. This is the main HTML or
SWF file for the application, and is the file that will be dis-
played/executed when the application first starts up.

The second file is called the application descriptor file, and it
is an XML file that provides metadata to Adobe AIR about the
application.

Let’s create these files for our application:

1. Create a new folder called AIRHelloWorld.

2. Inside this folder, create two new files called AIRHello
World.html and AIRHelloWorld.xml.

3. Open each file using your favorite text or HTML editor/
IDE.

Understanding application descriptor files

The application descriptor file is an XML file required for each
AIR application. It provides general metadata (such as the ap-
plication name and description) to Adobe AIR, as well as
information on how the application should be run. This in-
cludes specifying the root application file for the application
and the window mode that the initial application window
should use.

First, let’s look at the entire application descriptor file (AIR
HelloWorld.xml) for our application, and then we will go into
more detail regarding each item within the file.

NOTE
You can find a sample application descriptor file in the
AIR SDK in the templates folder.

Open AIRHelloWorld.xml and type in the following text:

30 | Chapter 2: Getting Started with Adobe AIR Development

<?xml version="1.0" encoding="utf-8" ?>
<application xmlns="http://ns.adobe.com/air/application/1.0">

 <id>com.oreilly.AIRHelloWorld</id>
 <filename>AIRHelloWorld</filename>
 <name>AIR Hello World</name>
 <description>A simple AIR hello world application</
 description> <version>1.0</version>

 <initialWindow>
 <content>AIRHelloWorld.html</content>
 <title>AIR Hello World</title>
 <systemChrome>standard</systemChrome>
 <transparent>false</transparent>
 <visible>true</visible>
 <minimizable>true</minimizable>
 <maximizable>true</maximizable>
 <resizable>true</resizable>
 </initialWindow>
</application>

The content should be pretty self-explanatory, but let’s go
through it line by line to understand what is going on.

<application xmlns="http://ns.adobe.com/air/application/1.0">

The namespace specifies the version of Adobe AIR that the
application targets—in this case 1.0.

Lets look at the next element:

 <id>com.oreilly.AIRHelloWorld</id>

The id element is important; it specifies a unique ID for the
application. Adobe AIR uses this ID to differentiate one appli-
cation from another.

As you can see, it uses the reverse domain format, which you
may be familiar with from some programming languages such
as Java, ActionScript, and some JavaScript frameworks. You
can create your own ID using your domain name and applica-
tion name.

The next section of elements specify general metadata about
the application:

Creating a Simple AIR Application with HTML and JavaScript | 31

 <filename>AIRHelloWorld</filename>
 <name>AIR Hello World</name>
 <description>A simple AIR hello world application</
 description> <version>1.0</version>

Table 2-2 lists each element and provides a description.

Table 2-2. Application Meta Data Elements

Element Description

filename The name of the native application executable that will be created.

name The name of the application. This is the name that will be exposed
to the operating system and user.

descrip
tion

Optional. A human-readable description of the application that
will be presented to the user during the installation process.

version Required. Specifies the version of the applications (such as “1.0”,
“v1”, etc.).

The next element is the initialWindow tag, which contains the
elements that specify how the application should be run by the
runtime:

 <initialWindow>
 <content>AIRHelloWorld.html</content>
 <title>AIR Hello World</title>
 <systemChrome>standard</systemChrome>
 <transparent>false</transparent>
 <visible>true</visible>
 <minimizable>true</minimizable>
 <maximizable>true</maximizable>
 <resizable>true</resizable>
 </initialWindow>

The content element is required and points to the main root
file of the application, which in this case is an HTML file.

NOTE
The application descriptor file and root content file must
be in the same folder.

32 | Chapter 2: Getting Started with Adobe AIR Development

The initialWindow element has a number of other elements
that specify the initial window parameters and chrome of the
application when it is first launched (see Table 2-3).

Table 2-3. initalWindow elements

Element Description

title The title that will appear in the main application window. Optional.

system
Chrome

The type of the system chrome that the application should use
(standard or none).

transpar
ent

Whether the application background should be transparent. This
option is applicable only if systemChrome is set to none. Op-
tional. Default value is false.

visible Whether the application is visible when it is first launched. This is
useful if your application needs to perform some complex initiali-
zation before displaying the UI to the user. Optional. Default is
false.

minimiza
ble

Whether the application can be minimized. Optional. Default is
true.

maximiza
ble

Whether the application can be maximized. Optional. Default is
true.

resizable Whether the application can be resized. Optional. Default is true.

For our example, we will use the operating system’s window
chrome.

Creating a Simple AIR Application with HTML and JavaScript | 33

NOTE
Notice that the default value of the visible element is
false. This means that if you do not explicitly set the
element to true, your application will have no UI when
it launches. In this case, you will have to programmati-
cally set the visible property to true.

This can be useful if the application needs to perform
some initialization or layout when it first launches. You
can allow the application to do its layout first, and then
only display the UI to the user once the layout is com-
plete.

This is all that is required for the application descriptor file for
our application. At this point, we are ready to create the main
HTML file for our application.

Creating the root application file

The root application file is the main file for the application that
will be loaded when the application is launched. This file can
be either a compiled Flash file (SWF) or an HTML file.

For this chapter, we will create a very simple HTML file to
ensure that our development environment is configured cor-
rectly. We will cover more advanced AIR API usage in Chap-
ter 3 and Chapter 4.

<html>
<head>
 <title>AIRHelloWorld</title>

 <script>
 function init()
 {
 runtime.trace("init function called");
 }
 </script>

</head>
<body onload="init()">
 <div align="center">Hello World</div>

34 | Chapter 2: Getting Started with Adobe AIR Development

</body>
</html>

As you can see, this is a very basic HTML file that displays
“Hello World” and calls a JavaScript function once the file has
loaded and initialized.

A couple of lines are worth pointing out:

<body onload="init()">

This line says we are just using the standard onload event on
the body element to get an entry point for JavaScript into our
application.

 <script>
 function init()
 {
 ...
 }
 </script>

This line says we are using a standard JavaScript function to
capture the onload event.

Accessing Adobe AIR APIs

Looking at the init JavaScript function, you’ll see some code
you may not be familiar with:

runtime.trace("init function called");

This is the only AIR-specific code/markup in the entire appli-
cation. The runtime property is a property placed on the
window object by Adobe AIR and provides an entry point into
the Adobe AIR engine and APIs. The trace function is a top-
level AIR API that takes a string and prints it out to the
command line (when the application is launched via the com-
mand line).

All access to AIR-specific APIs (including Flash Player APIs) is
accomplished from JavaScript via the runtime property. We
will cover this in more detail throughout the rest of the book.

Creating a Simple AIR Application with HTML and JavaScript | 35

NOTE
Checking for the existence of the runtime property is a
simple way to determine whether your HTML and Java-
Script application is running within Adobe AIR. To
check for the property, run the following code:

if(window.runtime)
{
 //running within AIR
}

Now that we have created both the application descriptor file
and the root HTML application file, we are ready to run and
test our application within the runtime.

Testing the Application
Although a number of HTML IDEs (such as Adobe Dream-
weaver) have support for launching and testing AIR applica-
tions directly from within the IDE, we will focus on launching
and testing AIR applications using the ADL command-line tool
included within the SDK. This will provide a solid basis for an
understanding of what is going on. It also provides the most
flexibility in integrating the development process with other
IDEs, editors, and workflows.

Using ADL to Launch the Application
The first step in testing the application is to run it as an AIR
application to make sure that:

• There are no errors in the application descriptor file

• The application launches

• The HTML renders correctly

• The JavaScript code functions as expected

Although we could package up the entire application and then
install it, this would be tedious, and it would make it difficult

36 | Chapter 2: Getting Started with Adobe AIR Development

to quickly iterate on and test new versions. Luckily, the Adobe
AIR SDK provides a command-line tool called ADL, which al-
lows you to launch an AIR application without having to install
it first.

To test the application:

1. Open a Terminal window (on the Mac) or a Console
window (on Windows).

2. Change to the directory that contains the AIRHello
World.html and AIRHelloWorld.xml files.

3. Run ADL with the following command, passing in the
name of the application descriptor file:

adl AIRHelloWorld.xml

This should launch your application within the standard sys-
tem chrome of your operating system (see Figure 2-2).

If the application does not launch correctly, or if you get an
error, do the following:

Figure 2-2. AIRHelloWorld application running from ADL on Mac
OS X

Testing the Application | 37

• Make sure you have configured the SDK correctly so that
the ADL tool can be found.

• Make sure you are running the ADL command from the
same directory that contains the AIRHelloWorld.xml file.

• Make sure your application descriptor file contains well-
formed XML.

• Make sure the information in the application descriptor
file is correct. Pay particular attention to the application
attributes and the initialWindow value.

• Make sure the AIRHelloWorld.html and AIRHello
World.xml files are in the same directory.

Now that we have fixed any issues and our application is run-
ning correctly, we can explore how to get information from the
application at runtime.

Capturing Output from the Application at Runtime
When running applications from the command line via ADL,
you can get runtime information and debugging information
from the application in a number of ways.

Runtime JavaScript errors

Any runtime errors that arise from JavaScript execution while
an AIR application is launched via ADL is running will be out-
put to ADL’s standard out.

Let’s modify our application to cause it to generate a JavaScript
runtime error. Change the contents of AIRHelloWorld.html to
the following

<html>
<head>
 <title>AIRHelloWorld</title>

 <script>
 function init()
 {
 runtime2.trace(“init function called”);
 }

38 | Chapter 2: Getting Started with Adobe AIR Development

 </script>

</head>
<body onload="init()">
 <div align="center">Hello World</div>
</body>
</html>

All we did was change the init function to try to access a prop-
erty named runtime2 that does not exist:

runtime2.trace("init function called");

Save the file, and run the application from ADL:

adl AIRHelloWorld.xml

The application should launch, and you should see the follow-
ing error output from the command line from which you
launched the application:

ReferenceError: Can't find variable: runtime2
init at app:/AIRHelloWorld.html : 8
init at app:/AIRHelloWorld.html : 8
onload at app:/AIRHelloWorld.html : 13

This output provides the error, which in this case is that the
variable named runtime2 cannot be found, as well as the line
number on which the error occurred (8) and a stack trace of
the call. You can use this information to track down any errors
within your application.

There are also times when the application may not be func-
tioning correctly, but is not throwing any errors. In such cases,
it is useful to be able to capture information about the state of
the application at runtime to track down any issues.

Adobe AIR provides a function to make it possible to send in-
formation from the application to standard out at runtime.

runtime.trace

As we touched on earlier in the chapter, Adobe AIR provides
a mechanism for sending strings from JavaScript to the com-
mand line.

Testing the Application | 39

The trace function on the runtime property takes a string,
which will then be output to ADL’s standard out. Here is an
example of its usage:

runtime.trace("This will be sent to standard out");

This can be useful for tracking information about the state of
the application without having to interrupt the execution of
the program.

Any non-string objects passed to trace() will have their
toString() function called. The JavaScript Object object pro-
vides a default toString() implementation, although some
classes (such as Array) implement more context-sensitive
toString() functions.

Here is an example of tracing an array that contains various
data types:

var a = ["a", 1, {foo:"bar"}];
runtime.trace(a);

This will result in the following output on the command line
from ADL:

a,1,[object Object]

Of course, you can implement your own toString() method
on your custom JavaScript classes, or override toString() func-
tions on existing classes to provide more class-specific output.

Packaging and Deploying the AIR Application
Now that we understand how to build, test, and debug an AIR
application, we are ready to create an AIR file that will allow
us to deploy and distribute our application.

What Is an AIR File?
An AIR file is a ZIP-based application distribution package that
is used to distribute AIR applications. It contains all of the files
necessary to install and run an AIR application, and Adobe AIR

40 | Chapter 2: Getting Started with Adobe AIR Development

uses it to create and install an AIR application onto the user’s
system.

The AIR file is created by the ADT command-line tool included
in the AIR SDK and is used to distribute the application to other
users.

NOTE
Installing an AIR file requires that Adobe AIR already be
installed on the user’s system.

An AIR file requires a minimum of two files: the application
descriptor file and a root application file. However, you can
also include other files, icons, directories, and assets that will
be bundled with the AIR file and installed alongside your ap-
plication. These files will then be available to the application
at runtime.

In addition, you will also need a certificate to digitally sign your
application.

Digitally Signing AIR Files
Adobe AIR requires that all AIR applications be digitally sign-
ed. There are two ways to do this.

Signing with a self-signed certificate

Developers can use ADT to digitally sign an AIR file with a self-
signed certificate. You self-sign an AIR file by generating a self-
signed certificate, and then signing the AIR file with it. Self-
signing AIR files provides little security, and no way to verify
that the author is who she says she is. When the application is
installed, Adobe AIR will warn users that the publisher of the
application cannot be verified.

Packaging and Deploying the AIR Application | 41

NOTE
You cannot switch among certificate types when updat-
ing applications.

AIR files signed with self-signed certificates are meant primar-
ily for development purposes. If you plan to widely distribute
your application to the public, you should sign your applica-
tion with a certificate issued by a respected and well-known
Certification authority (CA).

Signing with a CA-issued certificate

ADT also has support for signing applications using a verified
certificate from an established CA. This allows Adobe AIR to
verify the publisher of the application, and to reflect this in-
formation in the installation dialog.

NOTE
You can find more information on signing AIR files, in-
cluding a list of CAs that publish certificates that work
with Adobe AIR, in the Adobe AIR documentation at
http://www.adobe.com/go/learn_air_html.

With both types of certificates—self-signed and CA-issued—
Adobe AIR can verify that the AIR file has not been tampered
with.

Because we will not be redistributing the application we are
creating, we will be signing our AIR file with a self-signed cer-
tificate.

Creating an AIR File Using ADT
Creating a self-signed AIR file requires only two steps:

1. Use ADT to create a self-signed certificate.

42 | Chapter 2: Getting Started with Adobe AIR Development

http://www.adobe.com/go/learn_air_html

2. User ADT to create the AIR file, digitally signed with the
self-signed certificate.

Generating a self-signed certificate

Before signing an AIR file with a self-signed certificate, we need
to first generate the certificate.

We can use ADT to generate a self-signed certificate with the
following command-line options:

adt -certificate -cn COMMONNAME KEYTYPE CERTFILE PASSWORD

Table 2-4 lists and explains these command-line options.

Table 2-4. ADT Signing Options

Command-line option Explanation

COMMONNAME The common name of the new certificate. This is the name
associated with the certificate.

KEYTYPE The type of key to use for the certificate, either 1024-RSA
or 2048-RSA.

CERTFILE The filename in which the certificate will be stored.

PASSWORD The password for the certificate.

To generate a self-signed certificate, follow these steps:

1. Open a Terminal (Mac OS X) or Console (Windows)
window.

2. Change to the directory that contains AIRHello
World.html and AIRHelloWorld.xml.

3. Run the following command:

adt -certificate -cn foo 1024-RSA test_cert.p12 mypass

For this example, we will give the certificate a common
name of “foo” with a password of “mypass”.

This generates a self-signed certificate, and stores it in a file
named test_cert.p12.

Packaging and Deploying the AIR Application | 43

NOTE
You can use the same self-signed certificate to sign mul-
tiple AIR files.

At this point, you should have a file named test_cert.p12 in the
same directory as your application files. You can now use this
file to digitally self-sign your AIR file.

Generating an AIR file

The ADT command-line tool included in the Adobe AIR SDK
is used to create AIR files. Its usage format is:

adt -package SIGNINGOPTIONS AIRFILENAME FILESTOINCLUDE

To create an AIR file that is signed with a self-signed certificate,
follow these steps:

1. Open a Terminal (Mac OS X) or Console (Windows)
window.

2. Change to the directory that contains AIRHello
World.html and AIRHelloWorld.xml.

3. Run the following command:

adt -package -storetype pkcs12 -keystore test_cert.p12
AIRHelloWorld.air AIRHelloWorld.xml AIRHelloWorld.html

4. Upon running the command, you should be prompted
for the password for the certificate. Enter the password
for the certificate, which for this example is mypass.

44 | Chapter 2: Getting Started with Adobe AIR Development

NOTE
When signing the AIR file, ADT will attempt to connect
to a timeserver on the Internet to timestamp the file. If
it cannot connect to the timeserver, you will receive the
following error:

Could not generate timestamp

When developing and self-signing your AIR files, you
can get around this error by telling ADT to not time-
stamp the AIR file; you do this by adding the following
option to the signing options on the command line:

-tsa none

In this case, the entire command would be:

adt -package -storetype pkcs12 -keystore test_
cert.p12 -tsa none AIRHelloWorld.air
 AIRHelloWorld.xml AIRHelloWorld.html

This should create a file named AIRHelloWorld.air in the same
directory as your application files. If the file is not created, or
if you receive any errors, do the following:

• Make sure you have configured the SDK correctly, and
that the ADT tool can be found on your system’s path.

• Make sure you are running the ADT command from the
same directory that contains the AIRHelloWorld.xml file.

• Make sure your application descriptor file contains well-
formed XML.

• Make sure the information in the application descriptor
file is correct. Pay particular attention to the application
attributes, and the content element.

• Make sure the AIRHelloWorld.html, test_cert.p12, and
AIRHelloWorld.xml files are in the same directory.

• Make sure you entered the same password you used when
generating the certificate file.

Packaging and Deploying the AIR Application | 45

Testing and Installing the AIR File
Now that we have created the AIR file for our application, the
only step left is to test the file and make sure it installs correctly.

Testing the AIR file requires trying to install it onto the system,
and then launching it:

1. Switch to the directory that contains the AIR file in Win-
dows Explorer (Windows) or the Finder (Mac OS X).

2. Double-click the AIR file.

3. Follow the instructions in the Install dialog box.

4. On the last screen of the Install dialog box, make sure
“Start Application after installation” is checked.

The application should launch and run. If it does not launch,
or if you receive an error, do the following:

• Make sure you have correctly installed the 1.0 version of
Adobe AIR.

• Make sure there were no errors when you created the AIR
file via ADT.

• Make sure you have uninstalled any prerelease versions of
Adobe AIR.

Once you have confirmed that the application is installed and
runs correctly, you can relaunch it by clicking its icon. The
default shortcut location varies, depending on your operating
system. In Mac, the default shortcut is /Applications. In Win-
dows, it is Start Menu→Programs→<APPLICATION NAME>.

Deploying the AIR File
Now that we have successfully created and packaged our AIR
application, it’s time to distribute it. We can distribute the AIR
file via the Web, or directly via CD-ROM or other distribution
mechanisms.

46 | Chapter 2: Getting Started with Adobe AIR Development

NOTE
You can find extensive information on how to seamlessly
deploy Adobe AIR applications on the Web in the Adobe
AIR documentation, as well as in the tutorial at http://
www.adobe.com/devnet/air/articles/air_badge_in
stall.html.

Setting the MIME type

One thing to watch out for when distributing AIR files for
download from a web server is that the MIME type is set cor-
rectly on the server. If the MIME type is not set correctly, web
browsers may treat the AIR file as a ZIP file (and may rename
it in the process), or may display the raw bytes of the AIR file
in the browser, instead of downloading it to the user’s system.

The correct MIME type for an AIR file is:

application/vnd.adobe.air-application-installer-package+zip

For example, to set the MIME type for the Apache server, you
would add the following line to your Apache configuration file:

AddType application/vnd.adobe.air-application-installer-
package+zip .air

Check the documentation for your web server for specific in-
structions on how to set the MIME type.

At this point, you have all of the basic knowledge of how to
develop, test, and deploy AIR applications. You should now
be ready to begin to learn more about the AIR APIs and how
to build more full-featured and advanced applications.

Packaging and Deploying the AIR Application | 47

http://www.adobe.com/devnet/air/articles/air_badge_install.html
http://www.adobe.com/devnet/air/articles/air_badge_install.html
http://www.adobe.com/devnet/air/articles/air_badge_install.html

CHAPTER 3

Working with JavaScript and HTML
Within Adobe AIR

This chapter provides an overview of the HTML and JavaScript
environments within Adobe AIR. It discusses:

• The use of the open source WebKit HTML-rendering en-
gine within Adobe AIR

• JavaScript functionality within Adobe AIR

• Security Model

• Working with Adobe AIR, Flash Player and ActionScript
APIs from JavaScript

• Troubleshooting AIR Applications written with HTML
and JavaScript

Once you have completed this chapter, you should have a solid
understanding of the HTML and JavaScript environments
within Adobe AIR. You should also understand how to work
with AIR and ActionScript APIs within HTML and JavaScript-
based applications.

WebKit Within Adobe AIR
Adobe AIR leverages the open source WebKit-rendering en-
gine to add support for rendering HTML content to the run-
time.

49

In addition to HTML rendering, WebKit also provides support
for associated web technologies, such as (but not limited to):

• JavaScript

• XMLHttpRequest

• CSS

• XHTML

• W3C DOM Level 2 support

Essentially, Adobe AIR has a full HTML rendering engine, and
includes support for all of the same technologies that can be
used when developing web applications and content targeting
the web browser. Developers can build full-featured AIR ap-
plications that leverage these technologies.

NOTE
You can find more information on the WebKit project
at: http://www.webkit.org.

Why WebKit?
Adobe spent a considerable amount of time researching which
HTML engine to use within Adobe AIR and used a number of
criteria that ultimately led them to settle on WebKit.

Open project

Adobe knew from the very beginning that it did not want to
create and maintain its own HTML rendering engine. Not only
would this be an immense amount of work, but it would also
make it difficult for developers, who would then have to be-
come familiar with all of the quirks of yet another HTML
engine.

WebKit provides Adobe AIR with a full-featured HTML engine
that is under continuous development by a robust develop-
ment community that includes individual developers as well as
large companies such as Nokia and Apple. This allows Adobe

50 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

http://www.webkit.org

to focus on bug fixes and features, and also means that Adobe
can actively contribute back to WebKit, while also taking ad-
vantage of the contributions made by other members of the
WebKit community.

Proven technology that web developers know

As discussed earlier, one of the biggest problems with complex
web application development is ensuring that content works
consistently across browsers. While something may work per-
fectly in Firefox on the Mac, it may completely fail in Internet
Explorer on Windows. Because of this, testing and debugging
browser-based content can be a nightmare for developers.

Adobe wanted to ensure that developers were already familiar
with the HTML engine used within Adobe AIR so they did not
have to learn all of the quirks and bugs of a new engine.
Since Safari (which is built on top of WebKit) is the default
browser for Mac OS X (and is also available on Windows),
developers should be familiar with developing for WebKit.

Minimum effect on AIR runtime size

The size of Adobe AIR is approximately 11 MB on Windows
and approximately 16 MB on MAC. The WebKit code base
was well written and organized and has had a minimal impact
on the final AIR runtime size.

Proven ability to run on mobile devices

While the first release of Adobe AIR runs only on personal
computers, the long-term vision is to extend Adobe AIR from
the desktop to cell phones and other devices. WebKit has a
proven ability to run on such devices and has been ported to
cell phones by both Nokia and Apple.

WebKit version used within Adobe AIR
The version of WebKit included in Adobe AIR 1.0 is based off
the WebKit mainline version 523.15.

WebKit Within Adobe AIR | 51

Some changes were applied to this version in order to support
AIR’s own rendering pipeline and enforce some security re-
strictions (please check the “AIR Implementation of Function-
ality" and the “Security” subchapters to find more details about
the differences).

The User Agent reported when running in Adobe AIR in Win-
dows is:

Mozilla/5.0 (Windows; U; en) AppleWebKit/420+ (KHTML,
like Gecko) AdobeAIR/1.0

and on Mac:

Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en) AppleWeb
Kit/420+ (KHTML, like Gecko) AdobeAIR/1.0

Overall, developers should expect code running in Safari 3 to
also work in Adobe AIR, with the exceptions of the differences
discussed in this chapter.

JavaScript within Adobe AIR
Adobe AIR has full support for JavaScript within HTML con-
tent. JavaScript 1.5, which corresponds to ECMA-262 is sup-
ported.

The JavaScript engine is implemented via WebKit, and works
the same as it does within WebKit-based browsers. In addition
to having access to the HTML DOM, JavaScript can also access
AIR and Flash Player APIs directly via the window.runtime
property. This will be discussed in more detail later.

NOTE
For an in-depth introduction and discussion of Java-
Script, check out JavaScript: the Definitive Guide: 5th
Edition, published by O’Reilly:

http://www.oreilly.com/catalog/jscript5/

52 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

http://www.oreilly.com/catalog/jscript5/

AIR Implementation of Functionality
HTML and JavaScript functionality is consistent with that
found in other WebKit-based projects and browsers, such as
Apple’s Safari browser. When exploring documentation on
HTML engine / browser functionality, you can use references
to the Safari 3 browser as an indicator of the functionality
available within the HTML environment within AIR.

However, because the HTML engine is running within Adobe
AIR, and not a browser, there are a few differences that are
useful to understand before beginning development with
HTML and JavaScript within Adobe AIR.

URI Schemes
Working with Universal Resource Identifiers (URIs) within
HTML content in AIR applications is largely the same as work-
ing with URIs within the browser. This section gives a quick
overview of working with URIs within HTML content in AIR
applications, and introduces some new URIs made available
by the runtime.

Supported URI schemes

Adobe AIR provides support for the most common URI
schemes available within the browser

Table 3-1. Supported URI schemes

Scheme Description Example

http:// URI that points to a resource accessed
via the standard HTTP protocol.

http://www.adobe.com

https:// URI that points to a resource accessed
via a protocol encrypted with SSL/TLS.

https://secure.example.com

file:// URI that points to a resource on the
local or a networked file system.

file:///c:/Test/test.txt

mailto: URI that opens the default email ap-
plication.

mailto:john.doe@example.com

AIR Implementation of Functionality | 53

http://www.adobe.com
https://secure.example.com

Unsupported URI schemes

The feed:// and data:// URI schemes are not supported by
Adobe AIR 1.0, and there is only partial support for the
ftp:// scheme.

Finally, the javascript: URI scheme is not supported within
applications running within the Adobe AIR application sand-
box. Please check the Security model section later is this
chapter for more details.

AIR URI Schemes

Adobe AIR also provides a number of additional URIs that
makes it easy to reference files and content within specific areas
of the users system.

Table 3-2. Adobe AIR URI schemes

URI Description Example

app:/ Provides a reference to the root content directory
of the application. This should be used when ref-
erencing content included within the AIR file.

app:/images

app-storage:/ Provides a reference to an application-specific
storage area on the user’s system. This area is
useful for storing user-specific application set-
tings and content.

app-storage:/
settings/
pref.xml

NOTE
The AIR-specific URIs take only a single slash, versus
two slashes in the other URIs.

Within HTML content, these URI schemes can be used any-
where within HTML and JavaScript content where regular
HTTP URIs are used.

54 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

Relative URLs
You’re not restricted to using just absolute URLs within AIR
applications. You can also use relative URLs, but it is important
to remember that relative URLs within AIR applications are
relative to the application, and not to a server (as they would
be when doing traditional browser-based client/server devel-
opment).

Relative URLs will be relative to the root of the application,
and will resolve to the app:/ URI.

For example:

will resolve to:

You should keep this in mind when moving web and browser-
based content and code into an AIR application.

Cookies
Adobe AIR has full support for setting and getting cookies from
HTML-based content in remote sandboxes (content loaded
from http:// and https:// sources) that is bound to a specific
domain. Content loaded from the installed directory of the ap-
plication (referenced via app:/ scheme) cannot use cookies (the
document.cookie property).

Cookie support is implemented via the operating system’s net-
working stack. This means that AIR applications can share
cookies set by any browser or application that also leverage the
operating system stack.

For example, AIR applications can share cookies set through
Internet Explorer on Windows, and Safari on Mac, as they both
also use the operating system’s cookie storage functionality.
Firefox implements its own cookie storage and thus cookies
set within Firefox cannot be shared with AIR applications

AIR Implementation of Functionality | 55

NOTE
In addition to cookies, AIR applications have a number
of other APIs that can be used to persist data, including
the file API, as well as the embedded database API.

Windowing

Windows

You can create new windows via JavaScript just as you can
within the browser.

myWindow = window.open("Window.html", "myWindow",
"height=400,width=400");

However, the runtime property that provides access to AIR and
Flash Player APIs is not automatically available within the new
window. In order to make it available, you must explicitly place
it within the scope of the new window like so:

window.runtime = window.opener.runtime;

You can also create native windows using apis provided by
AIR. The HTMLLoader class includes a static method,
HTMLLoader.createRootWindow(), which lets you open a new
window (represented by a NativeWindow object) that contains
an HTMLLoader object and define some user interface settings
for that window. The method takes four parameters, which
allow you to define the user interface.

var initOptions = new runtime.flash.display.NativeWindow
InitOptions();var bounds = new runtime.flash.geom.Rectangle
(10, 10, 600, 400); var myHtml= runtime.flash.html.HTMLLoader.
createRootWindow(true, initOptions, true,bounds);
var urlReq = new runtime.flash.net.URLRequest("http://www.
example.com"); myHtml.load(urlReq);

Windows created by calling createRootWindow() directly in
JavaScript remain independent from the opening HTML win-
dow. The JavaScript window opener and parent properties, for
example, are null.

56 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

Dialogs

The alert, confirm and prompt HTML dialogs are also suppor-
ted within Adobe AIR.

In addition, the file-browse dialog created via:

<input type="file" />

is also supported in Adobe AIR 1.0.

XMLHttpRequest and Ajax
The XMLHttpRequest object, which enables the use of Ajax tech-
niques for sending and loading data, is completely supported
within AIR applications.

One advantage to developing Ajax applications within Adobe
AIR versus the browser is that because you have a consistent
runtime to target across operating systems, you do not have to
worry about cross-browser, platform inconsistencies in how
the API is implemented.

The primary benefit of this is that you have to write only one
version of the code.

Here is a simple example of an XMLHttpRequest object call with-
in an AIR application that works regardless of which operating
system the application is running on:

<script type="text/javascript">
 var xmlhttp;
 function appLoad()
 {
 //replace with URL to resource being loaded
 var url = "http://www.mikechambers.com/blog/";
 xmlhttp = new XMLHttpRequest();
 xmlhttp.open("GET", url,true);

 xmlhttp.onreadystatechange=function(){
 if (xmlhttp.readyState==4)
 {
 runtime.trace(xmlhttp.responseText);
 }
 }

AIR Implementation of Functionality | 57

 xmlhttp.send(null)
 }
</script>

When called, this function uses the XMLHttpRequest object to
load the specified URL and prints its contents out to the com-
mand line. The main thing to note in this example is that
because the runtime is known and it is consistent across oper-
ating systems, you do not have to detect the existence of, or in
the implementation of XMLHttpRequest as you would when de-
ploying in the browser.

Both synchronous and asynchronous XMLHttpRequest calls are
supported, as is loading data across domains.

Canvas object
The canvas element is supported by WebKit and also by AIR.
It defines APIs for drawing geometric shapes, but in most re-
spects it behaves like an image.

The result of a drop operation when dragging images can be
among other types (e.g.: a file reference) a canvas element; it
can be displayed by appending the element to the DOM.

Clipboard object
The WebKit Clipboard API is driven with the following events:
copy, cut, and paste. The event object passed in these events
provides access to the clipboard through the clipboardData
property.

You can use the methods of the clipboardData object to read
or write clipboard data.

For more details on how to do these operations, please check
the cookbook chapter.

58 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

Drag and drop
Drag-and-drop gestures into and out of HTML produce the
following DOM events: dragstart, drag, dragend, dragenter,
dragover, dragleave, and drop. The event object passed in these
events provides access to the dragged data through the data
Transfer property. The dataTransfer property references an
object that provides the same methods as the clipboardData
object associated with a clipboard event.

For more details on how to work with drag and drop, please
check the cookbook chapter.

Supported plug-ins
Adobe AIR does not support other plug-ins except Acrobat or
Adobe Reader 8.1+ for displaying PDF content and Flash Play-
er plug-in for displaying SWF content.

In order to load Flash content into HTML, you use the same
embed element syntax that you use when embedding Flash
content within a browser page.

<embed
 src="content.swf"
 quality="high"
 bgcolor="#FFFFFF"
 width="400"
 height="200"
 name="content"
 swLiveConnect="true"
 align="bottom"
 allowScriptAccess="always"
 type="application/x-shockwave-flash" pluginspage="http://
www.macromedia.com/go/getflashplayer" />

NOTE
You can load both relative and absolute URLs, with rel-
ative URLs being relative to the application install di-
rectory.

AIR Implementation of Functionality | 59

You can use the same techniques that you use in the browser,
such as the ExternalInterace API, to facilitate Flash to HTML
and HTML to Flash communication within HTML content.

For the SWF content, the Flash Player plug-in is built into AIR
and doesn’t need to use an external plug-in.

Unsupported functionality
The window.print() method is not supported within Adobe
AIR 1.0. There are other methods available via the exposed AIR
APIs that give you access to printing within the runtime, but
these might feel different from what is available at the browser
level.

In addition, support for Scalable Vector Graphics (SVG) is not
included in AIR 1.0.

Security Model
This section discusses a number of differences in the security
model implementations when running content within Adobe
AIR, versus running it in the browser.

Why a different security model?
Adobe AIR enables Ajax and Flash/Flex developers to use their
existing skills to build and deploy desktop applications. Al-
though these applications are built using web technologies, the
key thing to keep in mind is that the end result is targeted for
running on desktop, and thus the security model for AIR is
much closer to that of a desktop application than of a web
application.

A desktop application has high privileges compared to a web
application as it is installed by the user on a specific machine,
implying a degree of trust that is greater than that of arbitrary
web content. Unfortunately there are design and implementa-
tion patterns common to web applications that can be danger-

60 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

ous when combined with the local system access or other AIR
APIs available.

Adobe AIR Sandboxes
The runtime provides a comprehensive security architecture
that defines permissions according to each file in an AIR ap-
plication. Permissions are granted to files according to their
origin, and are assigned into logical security groupings called
sandboxes.

Application sandbox

The application sandbox provides access to all Adobe AIR
APIs, including those that provide access to the user’s system.

When an application is installed, all files included within an
AIR installer file are copied onto the user’s computer into an
application directory. Developers can reference this directory
in code through the app:/ URI scheme. All files within the ap-
plication directory tree are assigned to the application sandbox
when the application is run.

When running within the application sandbox, some poten-
tially dangerous patterns that are allowed in the browser, are
restricted. The things that are disabled revolve around the im-
porting of remote JavaScript content and the dynamic execu-
tion/evaluation of JavaScript strings.

NOTE
Please see the Adobe AIR documentation for a complete
list of what is and is not allowed within the application
sandbox.

Non-application sandbox

The non-application sandbox contains all content that is not
loaded directly into the application sandbox. This may include
both local and remote content loaded into the application at

Security Model | 61

runtime. Such content does not have direct access to AIR APIs
and obeys the same rules that it would have to obey in the
browser when loaded from the same location (for example
HTML from a remote domain behaves like it would behave in
the browser). Because this content doesn’t gain direct access
to AIR APIs it can call into any code evaluation technique that
works in browser, such as eval, loading remote scripts, etc.

Developing within the Sandboxes
Access to the runtime environment and AIR APIs are only
available to HTML and JavaScript running within the appli-
cation sandbox. At the same time, dynamic evaluation and
execution of JavaScript, in its various forms, is largely restricted
within the application sandbox. These restrictions are in place
whether or not your application actually loads information di-
rectly from a remote server.

Developing within the application sandbox

Here’s an overview of the differences you may run into when
coding for application sandbox.

In general, code evaluation restrictions do not apply while code
is initializing prior to the onload event. Strings can be turned
into executable code via the use of eval or the Function con-
structor, and attributes are turned into actual event handlers
such as:

<input type="button" onclick="doClickBtn();"/>

NOTE
If code execution is prevented due to sandbox security
restrictions, the following JavaScript error will be
thrown : “Adobe AIR runtime security violation for
JavaScript code in the application security sandbox.”

HTML files running in applica-
tion sandbox (loaded from the installed directory of the appli-
Loading remote JavaScript files.

62 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

cation) can only import JavaScript files located in the same
installed directory via

 <script src="file.js" type="text/javascript"></script>

If you must load remote JavaScript, you must either install the
file(s) with the application or load it into the non-application
sandbox.

Code running in the application
sandbox can load data from any remote domain via XMLHttpRe
quest. There is no cross domain policy enforced for the code
loaded from the application install directory, as there is no do-
main associated with this code (it uses the AIR specific app:/
scheme to load the files from the installation directory). How-
ever, the tradeoff is that the content loaded via XHR can only
be used as data; it cannot be transformed into executable code
(with one exception explained below).

APIs which allow dynamically generated code to execute are
prohibited after the onload event. The table below shows
which APIs are restricted when running within the application
sandbox:

eval()

Prohibited after onload. After the parsing time, you cannot use
eval() to transform strings (such as those imported via XHR)
into JavaScript code. The exception from this rule is eval()
used with a string parameter of type JSON — pure JSON strings
can be transformed into actual objects, although JSON code that
contains call back functions are not supported.

Function

constructor

Prohibited after onload.

setTimeout() Prohibited after onload when using string parameters.

setInterval() Prohibited after onload when using string parameters.

javascript:URLs Prohibited.

document.write
()

Prohibited after onload.

Cross-domain content loading.

Security Model | 63

innerHTML Code attributes on elements inserted via innerHTML or out-
erHTML are not transformed into executable code, such as
container.innerHTML = '<input type="button” onclick="do-
ClickBtn();"/>';

script.src Setting the src tag of a script element to load remote data /
content is prohibited.

XMLHttpRequest Synchronous calls outside of the application sandbox prohibited
prior to onload.

Asynchronous calls initiated in onload always finish after on-
load, and code evaluation restrictions will be applied to loaded
content.

Developing within the non-application sandbox

Everything that is not loaded from the application install di-
rectory is loaded into the non-application sandbox.

Code in the non-application sandbox does not have direct ac-
cess to AIR APIs, and thus does not have the JavaScript code
evaluation restrictions applied to it.

When a file loaded from the
application sandbox loads a file from a non-application sand-
box (either via the iframe or frame tags, or from opening a new
window) the loaded content will be placed within the non-ap-
plication security sandbox, with no direct access to AIR apis.

Adobe AIR also provides a way to load application content into
the non-application sandbox. This is done via the sandbox
Root and documentRoot properties on the iframe and frame tags.

<iframe
 src="ui.html"
 sandboxRoot="http://www.example.com/airapp/"
 documentRoot="app:/sandbox/">
</iframe>

This example maps content installed in the “sandbox” subdir-
ectory of the application to run in the remote sandbox bound
to www.example.com (http://www.example.com) domain.

Creating a non-application sandbox.

64 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

http://www.example.com
http://www.example.com

The sandboxRoot property specifies the URL to use for deter-
mining the sandbox and domain in which to place the iframe
content. The file:, http:, or https: URL schemes must be
used.

The documentRoot property specifies the directory from which
to load the iframe content. The file:, app:, or app-storage:
URL schemes must be used.

XMLHttpRequest
Code in the non-application sandbox is bound by a same-
origin policy and, by default, cannot do cross-domain data
loading via XMLHttpRequest from any remote URL.

However, this behavior can be overwritten by setting the
allowCrossDomaininXHR attribute to true on the iframe or
frame element loading the content.

window.open
The window.open() api only works if it’s a direct result of
user interaction (such as mouse click or keypress).

Window term
The title of a window opened by non-application content
is prefixed with the application title (to prevent windows
opened by remote content from spoofing windows
opened by the application).

Scripting between sandboxes

The runtime lets you create an interface called Sandbox Bridge
between content in a non-application sandbox and its parent
document in the application sandbox. This is a bi-directional
serialization API designed to allow domains/sandboxes that
otherwise cannot trust each other entirely to interact.

It is possible for the developer to pro-
vide a bridge between application sandboxed content (parent)
that loads content (child) into the non-application sandbox.
Essentially, the parent can explicitly allow the child to access
specific properties and methods that it defines.

Differences on code running under non-application sandbox.

Using the Sandbox Bridge.

Security Model | 65

The application sandbox content (parent) can set up a property
called parentSandboxBridge on the frame or iframe tag, and ex-
pose functions by attaching them to this property. These func-
tions can be accessed by the non-application content inside the
iframe or frame.

In a similar way, the non-application sandbox—the child—
can set up a property called childSandboxBridge on its window
object and expose functions to the application sandbox.

In order for a script in a child document to access a function
attached to the parentSandboxBridge property, the bridge must
be set up before the script is run. A new AIR-specific event
called dominitialize is fired when the DOM has been created,
but before any scripts have been parsed, or DOM elements
added. You can use the dominitialize event to establish the
bridge early enough in the page construction sequence that all
scripts in the child document can access it. Here is an example:

parent.html

<html>
<head>
<script type="text/javascript">
 var bridgeInterface = {};
 bridgeInterface.testProperty = "Bridge engaged";
 bridgeInterface.testFunction = function() { alert
 ('testFunction') };

 function setupBridge(){
 document.getElementById("sandbox").contentWindow.
 parentSandboxBridge =bridgeInterface;
}
</script>
</head>
<body>
<iframe id="sandbox"
 src="http://www.example.com/airapp/child.html"
 documentRoot="app:/"
 sandboxRoot="http://www.example.com/airapp/"
 ondominitialize="setupBridge ()">
</iframe>
</body>
</html>

66 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

child.html

<html>
<head>
<script type="text/javascript">
alert(window.parentSandboxBridge.testProperty);
</script>
</head>
<body></body>
</html>

As a general rule, you should not directly expose AIR apis to
content running in the non-application sandbox, but rather
should encapsulate the access via a function. This ensures that
only specific AIR APIs can be called, and when they are called,
are only executed in the manner that you allow.

Table 3-3. Sandboxes capabilities overview

Capability Application sandbox Non-application sandbox

Direct access to AIR APIs Yes No

Access to application sand-
box functions that use AIR
APIs via the SandboxBridge

N/A Yes

Loading remote JavaScript
files

No Yes

Can, by default, execute
cross-domain requests
(XHR)

Yes No

Supports transforming
strings into executable code
after the onload event

No Yes

Ajax frameworks work by
default

Noa Yes

a Frameworks must add support for Adobe AIR.

For more details on working with the Sandbox Bridge see:
http://www.adobe.com/devnet/air/ajax/quickstart/sand
box_bridge.html

Security Model | 67

http://www.adobe.com/devnet/air/ajax/quickstart/sandbox_bridge.html
http://www.adobe.com/devnet/air/ajax/quickstart/sandbox_bridge.html

Using JavaScript Frameworks
Because of the differences of the security models between con-
tent running within the browser, and content running within
Adobe AIR, most JavaScript frameworks must explicitly add
support for Adobe AIR in order for them to running correctly
within an Adobe AIR application.

At the time that the book was authored, all major JavaScript
frameworks have added (or are adding) support for Adobe AIR.

JavaScript Frameworks and Libraries supporting AIR
application sandbox
Dojo Toolkit 1.1.0 Beta

http://www.dojotoolkit.org/air

Ext JS 2.0.2 with Adobe AIR Adapter
http://extjs.com/download

jQuery 1.2.3
http://docs.jquery.com/Downloading_jQuery

YUI 2.5.1
http://developer.yahoo.com/yui/

MooTools 1.11
http://www.mootools.net/download

FCKeditor 2.6.0 Beta
http://www.fckeditor.net/

MochiKit 1.3.1
http://mochikit.com/download.html

Spry Prerelease 1.6.1
http://labs.adobe.com/technologies/spry/

Ajax frameworks and libraries compatible with AIR
application sandbox at the time of authoring this book
For a complete and up to date list of frameworks that support
Adobe AIR please check the AIR product page http://

68 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

http://www.dojotoolkit.org/air
http://extjs.com/download
http://docs.jquery.com/Downloading_jQuery
http://developer.yahoo.com/yui/
http://www.mootools.net/download
http://www.fckeditor.net/
http://mochikit.com/download.html
http://labs.adobe.com/technologies/spry/
http://www.adobe.com/products/air/

www.adobe.com/products/air/ or the AIR Developer Center for
Ajax: http://www.adobe.com/devnet/air/ajax/.

Accessing AIR APIs from JavaScript
In addition to the standard JavaScript and HTML DOM APIs,
JavaScript code running within the application sandbox in an
AIR application can also take advantage of APIs provided by
the runtime, as well as Flash Player APIs and even ActionScript
3 libraries. This greatly extends the capabilities of JavaScript
over the APIs available in the browser, and includes function-
ality such as:

• Playing sounds

• Manipulating images and bitmaps

• Reading and writing files to and from the local file system

• Reading and writing to and from an encrypted local store

• Access to a relational local database

• Creating, controlling and manipulating native windows

• Creating and working with native menus

• Making direct socket connections (both binary and text
based)

• Network detection

• Accessing the clipboard

• Dragging data between AIR applications and OS or an-
other application

• File extension registration and running at startup

• Support for dock and tray icons

NOTE
You can find examples of how to leverage these features
in the cookbook section.

Using JavaScript Frameworks | 69

http://www.adobe.com/products/air/
http://www.adobe.com/devnet/air/ajax/

This section discusses how to leverage AIR and Flash Player
APIs from JavaScript, as well as how to load and leverage com-
piled ActionScript libraries from within JavaScript.

The JavaScript environment and its relationship with AIR
The following diagram shows the relationship between the two
environments.

Only a single native window is shown but an AIR application
can contain multiple windows. Also, a single window can con-
tain multiple HTMLLoader objects.

The JavaScript environment has its own document and win-
dow objects. JavaScript code can interact with the AIR runtime
environment through the runtime, nativeWindow, and
htmlLoader properties of window.

The runtime property provides access to AIR API classes; it
allows you to create new AIR objects as well as access static
members.

The nativeWindow gives you access to the current instance of
the NativeWindow that controls the current application window.

The htmlLoader gives you access to the current instance of the
HTMLLoader that controls how content is loaded and rendered.

NOTE
Only content that is part of the application sandbox has
access to these three properties.

ActionScript code can interact with the JavaScript environ-
ment through the window property of an HTMLLoader object,
which is a reference to the JavaScript window object.

In addition, both ActionScript and JavaScript objects can listen
for events dispatched by both AIR and JavaScript objects.

70 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

There is also another important object instance available in any
AIR application that is not shown in the diagram. The Nati
veApplication object provides information about the applica-
tion state, dispatches several important application-level
events, and provides useful functions for controlling applica-
tion behavior. A single instance of the NativeApplication ob-
ject is created automatically and can be accessed through the
class-defined NativeApplication.nativeApplication property.

To access the object from JavaScript code you could use:

AIR runtime environment

AIR application

NativeWindow

HTMLLoader

window

window

htmlLoader

nativeWindow

runtime

document

body head

h1 div table

p

JavaScript
enviroment

Figure 3-1. JavaScript environment in an AIR Application

Using JavaScript Frameworks | 71

var app = window.runtime.flash.desktop.NativeApplication.
nativeApplication;

Accessing AIR and Flash Player APIs
Most AIR and Flash Player APIs are contained within packages
(similar to how many Ajax frameworks leverage namespaces
and packages). This helps organize the APIs, and also reduces
the possibility of naming conflicts. When accessing AIR and
Flash Player APIs directly from JavaScript, you must do so via
their complete package path and name.

As discussed earlier, all AIR and Flash Player APIs are made
available via the window.runtime property. The runtime prop-
erty is at the root of the runtime environment, and all APIs are
relative to this root.

For example, to access an API which is not contained within a
package, such as trace you reference it directly from the run-
time property, like so:

window.runtime.trace("foo");

However, if you want to access an API that is contained within
a package, you must prepend the package path to the API. For
example, to access the amount of memory currently used by
the application, you can call the totalMemory Flash Player prop-
erty that is in the flash.system.System class. To call this API
from JavaScript:

var mem = window.runtime.flash.system.System.totalMemory;

This also applies when creating new instances of an API class
from within JavaScript:

var file = new window.runtime.flash.filesystem.File();

This code creates a new File instance that can be used to work
with the file system.

Here is a complete example that shows how to write a file
named output.txt to the user’s desktop:

//call a static property
var desktop = window.runtime.flash.filesystem.File.desktop

72 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

Directory;

//call a function on an instance of a class
var file = desktop.resolvePath("output.txt");

//create a new instance of a class using new
var fileStream = new window.runtime.flash.filesystem.
FileStream();

 //call a function, passing arguments
 fileStream.open(file, window.runtime.flash.filesystem.
 FileMode.WRITE);

 fileStream.writeUTFBytes("Hello World");
 fileStream.close();

Don’t worry too much about what the code is doing in this
example, but rather focus on how the AIR APIs are called from
JavaScript.

This allows you to leverage virtually any AIR or Flash Player
API from within JavaScript.

By remembering how to use the package structure to call APIs,
you can leverage all AIR, Flash Player and ActionScript APIs
even if JavaScript-specific documentation is not provided.

Working with AIR and Flash Player Events

Many of the AIR and Flash Player APIs make extensive use of
events. Event handling in ActionScript-based APIs is based on
the W3C DOM Level 3 event model. This is similar to the W3C
DOM Level 2 event model available within JavaScript, but is
very different from the callback mechanism often deployed in
JavaScript.

In order to be notified when an event from an AIR or Flash
Player API occurs, you must register to listen for it. The best
way to understand this is to look at an example. The following
example registers for a NETWORK_CHANGE event that is broadcast
by the NativeApplication instance:

 function onNetworkChange(event)
 {
 runtime.trace("Network status changed");

Using JavaScript Frameworks | 73

 }

 function onAppLoad()
 {
window.runtime.flash.desktop.NativeApplication.
nativeApplication.addEventListener(
 window.runtime.flash.events.Event.
 NETWORK_CHANGE,
 onNetworkChange);
 }

As you can see from the example, you register for events broad-
cast by a class instance by calling the addEventListener func-
tion on the class instance. This API requires two arguments.

The first argument is the event name of the event being broad-
cast. For all AIR and Flash Player APIs, there will be a constant
for the event name, which you can find in the documentation.

The second argument is a reference to the function that will
handle the event. In this case, the function is named onNetwork
Change. Looking at the function, you can see that it is passed
an argument with information about the event. Again, all AIR
and Flash Player APIs will pass an object to the event handler
function, which provides information about the event. You can
find the exact type of event object passed to the handler, and
the information it provides, by referencing the API documen-
tation.

Using AIRAliases.js file

As the previous examples show, being able to leverage AIR and
Flash Player APIs from directly within JavaScript can be very
powerful. However, because you must reference the APIs via
the runtime property and the complete API package path, it
can lead to very verbose code.

In order to make it easier to use some of the more common AIR
and Flash Player APIs from within JavaScript, Adobe has cre-
ated a JavaScript include file, named AIRAliases.js. This file,
which can be found in the frameworks directory of the SDK,
provides aliases for commonly used APIs to make them more
convenient to use from within JavaScript.

74 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

To use the aliases file, copy it from the SDK to your application
directory (make sure to also package it in your AIR file). You
then include it within your application using the script tag in
each HTML document that you want to leverage the aliases in.

For example, let’s look at the earlier example that writes a file
to the desktop, but uses the JavaScript aliases provided in the
AIRAliases.js file instead of typing out the complete package
paths:

<script src="AIRAliases.js" type="text/javascript"></script>

<script type="text/javascript">
 function writeFile()
 {
 var desktop = air.File.desktopDirectory;
 var file = desktop.resolvePath("output.txt");
 var fileStream = new air.FileStream();
 fileStream.open(file, air.FileMode.WRITE);
 fileStream.writeUTFBytes("Hello World");
 fileStream.close();
 }
</script>

First, notice that the code is much less verbose. This is because
instead of having to reference APIs via window.runtime and then
the complete package path, we can use the aliases within the
include file.

For example, this reduces:

var desktop = window.runtime.flash.filesystem.File.
desktopDirectory;

to:

var desktop = air.File.desktopDirectory;

Second, the AIR and Flash Player APIs are placed in a name-
space called air. If you open the AIRAliases.js file, you can see
how the aliases actually work. For example, here is the code
that sets up the File API aliases:

var air; if (!air) air = {};

// file
air.File = window.runtime.flash.filesystem.File;

Using JavaScript Frameworks | 75

air.FileStream = window.runtime.flash.filesystem.FileStream;
air.FileMode = window.runtime.flash.filesystem.FileMode;

To see a complete list of APIs included, open up the AIRAlia
ses.js file with a text editor. While not all APIs are included,
you can easily add additional APIs by following the existing
examples in the file.

Leveraging Compiled ActionScript Libraries

Not only can AIR applications leverage Flash Player APIs di-
rectly from JavaScript, they can also access compiled Action-
Script 3 libraries from within JavaScript.

In addition to loading external JavaScript files, the HTML
script tag within an AIR application also has support for load-
ing compiled ActionScript 3 libraries and providing access to
the ActionScript classes included within the file. Once the SWF
is loaded, the APIs can be referenced in the same manner as the
AIR and Flash Player APIs are referenced via the API package
path and API name.

NOTE
This technique works only with ActionScript 3 libraries.

Let’s look at an example. Included in the Adobe AIR SDK is a
SWF that contains the ActionScript 3 Adobe AIR service con-
nectivity API. While this example won’t show how to use that
API, it will show how to access those APIs from within Java-
Script.

NOTE
An example of how to use the Service Connectivity API
is provided in the cookbook section.

76 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

In order for the example to work, you must copy the frame
works/servicemonitor.swf file from the AIR SDK to your appli-
cation directory.

Any classes and APIs available within the compiled SWF will
be made available via the window.runtime property. The API we
want to reference is in a class named ServiceMonitor in the
air.net package.

Here’s the code:

<script src="servicemonitor.swf" type="application/x-
shockwave-flash"></script>

<script type="text/javascript">
 function onAppLoad()
 {
 var monitor = new runtime.air.net.ServiceMonitor();
 }
</script>

If AIRAliases.js is included in the page you can use the short
version:

var monitor = new air.ServiceMonitor();

This is a very simple example that shows how to load compiled
ActionScript libraries, and then access them from JavaScript.
In this case, we include the servicemonitor.swf file via the
HTML script tag using the special type "application/x-shock
wave-flash“. This file contains the compiled ActionScript 3
APIs for the air.net.ServiceMonitor class.

Using this technique allows you to leverage third party Ac-
tionScript APIs from within AIR applications via JavaScript.

Using JavaScript Frameworks | 77

NOTE
Most ActionScript 3 libraries are distributed as zip-based
SWC files. In order to use the libraries within JavaScript,
change the extension of the library from SWC to ZIP,
unzip them using a zip program, and then remove the
library’s SWF file contained within the SWC.

You can then include the SWF within your application
in the same manner as demonstrated earlier.

Troubleshooting AIR Applications
The process of developing an AIR application is much the same
as that of developing an HTML-based web application.

The same thing is true when it comes to debugging an AIR
application. One difference is that the JavaScript error mes-
sages go to the console (when running the application with AIR
Debug Launcher) and not in a separate window as you might
be used to in the browser world.

This section covers some of the new messages you might come
across that are introduced by the runtime and also gives you a
quick overview of an AIR SDK tool that can be used to make
your life easier when working with HTML/JavaScript.

New JavaScript error messages

Security violation for Javascript code

If you call code that is restricted from use in the application
sandbox due to security restrictions, the runtime dispatches a
JavaScript error: "Adobe AIR runtime security violation for
JavaScript code in the application security sandbox.”

Referencing a JavaScript object no longer available

When an object dispatches an event to a handler that has al-
ready been unloaded, you see the following error message:

78 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

"The application attempted to reference a JavaScript
object in an HTML page that is no longer loaded.”

To avoid this error, remove JavaScript event listeners in an
HTML page before it goes away. In the case of page navigation
(within an HTMLLoader object), remove the event listener
during the unload event of the window object.

// In this example the event listener for an uncaughtScript
Exception event is removed when unload event fires
window.onunload = cleanup;
window.htmlLoader.addEventListener('uncaughtScriptException',
uncaughtScriptException);
function cleanup()
{
 window.htmlLoader.removeEventListener('uncaught
ScriptException',
 uncaughtScriptExceptionHandler);
}

Missing event listeners for error events

Exceptions, rather than events, are the primary mechanism for
error handling in the runtime classes. However, because ex-
ceptions don’t work for asynchronous operations, the runtime
dispatches an error event object.

If you do not create a listener for the error event (such as when
loading files asynchronously), the AIR Debug Launcher
presents a dialog box with information about the error.

Most error events are based on the ErrorEvent class, and have
a property named text that is used to store a descriptive error
message.

An error event does not cause an application to stop executing.
It manifests only as a dialog box when launched via ADL and
is not presented when running in an installed application.

AIR Introspector
The Adobe AIR SDK includes a JavaScript based tool called
AIR Introspector that makes it easier to develop HTML based

Troubleshooting AIR Applications | 79

applications for Adobe AIR. Tje tool can be used to introspect
the content (such as the DOM) of HTML content running
within an AIR application.

In order to use the AIR Introspector with your application,
copy the AIRIntrospector.js file from the frameworks directory
of the SDK into to your application project directory and then
load the file into your application via the script tag:

<script src="AIRIntrospector.js" type="text/javascript">
</script>

The tool provides a number of features and functionality:

• A tool that allows you to point to a user interface element
in the application and see its markup and DOM proper-
ties.

• Ability to edit the attributes and text nodes for DOM el-
ements.

• A console for introspecting, and adjusting objects refer-
ences, properties and code. This includes the ability to
execute JavaScript code.

• View of DOM properties and functions.

Figure 3-2. AIR Introspector window

80 | Chapter 3: Working with JavaScript and HTML Within Adobe AIR

• Lists of links, CSS styles, images, and JavaScript files loa-
ded into the application.

• Ability to view the initial HTML source and the current
markup source for the user interface.

• A viewer for XMLHttpRequest objects and their properties,
including responseText and responseXML properties (when
available).

• Ability to search for matching text in the source code and
files.

At this point, you should have a good understanding of the
HTML and JavaScript environments within Adobe AIR, as well
as how to leverage AIR, Flash Player and third-party Action-
Script 3 APIs directly from JavaScript.

The rest of the book will use this knowledge to show how to
accomplish specific tasks from HTML and JavaScript applica-
tions running within Adobe AIR.

Troubleshooting AIR Applications | 81

CHAPTER 4

Adobe AIR Mini-Cookbook

This chapter provides solutions to common tasks when devel-
oping Adobe AIR applications. The solutions in this chapter
illustrate many concepts used in AIR application development,
and provide working HTML and JavaScript code that you can
leverage within your application.

NOTE
All examples in this chapter assume that you are using
the AIRAliases.js file.

Application Deployment

Deploy from a Web Page

Problem

You have finished your application, have signed and packaged
it, and want to distribute it via a web page.

Solution

Adobe AIR applications can be easily distributed from a web
page using the badge installer included with the SDK.

83

Discussion

Adobe AIR application files are largely self-contained entities,
and are ready for distribution once they are signed and pack-
aged. The resultant file will have an .air extension. That appli-
cation file can be distributed via email, CD-ROM, or other
traditional forms; however, installing an .air file requires that
Adobe AIR is already present on the target machine. Alterna-
tively, a web-page-based “badge installer” can streamline in-
stallation by detecting the runtime and installing it if necessary
before installing your application.

Though you can customize it in a number of different ways, a
sample badge installer is included with the Adobe AIR SDK.
The badge takes the form of a small 217×180 area, which is
ideal for a blog sidebar or other constrained spaces. The default
badge installer runs as a Flash 9.0.115 (Flash Update 3) com-
ponent in the browser. The Flash source file (FLA) is also
included with the SDK for additional customization.

NOTE
You can find the files for the sample badge installer in
the samples/badge directory of the SDK.

Deploying with the badge installer requires four files:
badge.swf, default_badge.html, AC_RunActiveContent.js, and
your AIR application.

Even though the badge installer does appear as Flash content
on a web page, you do not need to have any Flash knowledge
or software such as Adobe Flash CS3. The badge installer was
prebuilt with a number of configurable options that you can
set from within the containing HTML page. On line 59 of the
default_badge.html file, you will see the flashvars parameter,
which is assigned the various initialization properties that are
specific to your application. This parameter takes the form of
a query string, and has the options outlined in Table 4-1.

84 | Chapter 4: Adobe AIR Mini-Cookbook

Table 4-1. Badge Installer flashvars options

Parameter Description

appname The name of the application, displayed by the badge installer.

appurl Required. The URL of the Adobe AIR file to be downloaded. You
must use an absolute, not a relative, URL.

airversion Required. For the 1.0 version of the runtime, set this to 1.0.

imageurl Optional. The URL of the image to display in the badge.

buttoncolor Optional. The color of the download button (specified as a hex
value, such as FFCC00).

message
color

Optional. The color of the text message displayed below the
button (specified as a hex value, such as FFCC00).

Here is an HTML page that displays the badge installer to in-
stall an AIR application, as well as the AIR runtime if necessary:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">
<head>

<title>Adobe AIR Application Installer Page</title>
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1" />

<style type="text/css">
<!--
#AIRDownloadMessageTable {
 width: 217px;
 height: 180px;
 border: 1px solid #999;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: 14px;
}

#AIRDownloadMessageRuntime {
 font-size: 12px;
 color: #333;
}
-->
</style>

<script language="JavaScript" type="text/javascript">

Application Deployment | 85

<!--
var requiredMajorVersion = 9;
var requiredMinorVersion = 0;
var requiredRevision = 115;
</sc

</head>
<body bgcolor="#ffffff">

<script src="AC_RunActiveContent.js" type="text/javascript">
</script>

<script language="JavaScript" type="text/javascript">
<!--
// Version check based upon the values entered above in
"Globals" var hasRequestedVersion = DetectFlashVer(
requiredMajorVersion, requiredMinorVersion,
requiredRevision);

// Check to see if the version meets the requirements
// for playback
if(hasReqestedVersion)
{

 AC_FL_RunContent(
 'codebase','http://fpdownload.macromedia.com/pub/
 shockwave/cabs/flash/swflash.cab',
 'width','217',
 'height','180',
 'id','badge',
 'align','middle',
 'src','badge',
 'quality','high',
 'bgcolor','#FFFFFF',
 'name','badge',
 'allowscriptaccess','all',
 'pluginspage','http://www.macromedia.com/
 go/getflashplayer',
 'flashvars','appname=My%20Application&appurl=
 myapp.air&airversion=
 1.0&imageurl=test.jpg',
 'movie','badge'); //end AC code

} else {
 document.write('<table id="AIRDownloadMessageTable"><tr>
 <td>Download My Application
 now.

86 | Chapter 4: Adobe AIR Mini-Cookbook

This
 application requires the <a href="');

 var platform = 'unknown';

 if(typeof(window.navigator.platform) != undefined)
 {
 platform = window.navigator.platform.toLowerCase();
 if(platform.indexOf('win') != −1)
 {
 platform = 'win';
 } else if(platform.indexOf('mac') != −1) {
 platform = 'mac';
 }
 }

 if(platform == 'win')
 {
 document.write('http://airdownload.adobe.com/air/win/
 download/1.0/
AdobeAIRInstaller.exe');
 } else if(platform == 'mac') {
 document.write('http://airdownload.adobe.com/air/
 mac/download/1.0/
AdobeAIR.dmg');
 } else {
 document.write('http://www.adobe.com/go/getair/');
 }

 document.write('">Adobe® AIR™ runtime.
</td></tr></table>');
}
// -->
</script>

<noscript>
<table id="AIRDownloadMessageTable">
<tr>
 <td>
 Download My Application now.

This application
requires Adobe® AIR™ to be installed for
<a href="http://airdownload.adobe.com/air/mac/download/
1.0/AdobeAIR.dmg">Mac OS or <a href="http://
airdownload.adobe.com/air/win/download/1.0/
AdobeAIRInstaller.exe">Windows.
 </td>

Application Deployment | 87

</tr>
</table>
</noscript>

</body>
</html>

Application Chrome

Add Custom Controls

Problem

You want to create custom window chrome for your applica-
tion and you need the user to be able to close and minimize the
application.

Solution

Use the NativeWindow class within Adobe AIR to integrate,
minimize, and close button functionality.

Discussion

Although Adobe AIR allows developers to completely define
and customize the application’s window chrome, it is impor-
tant to remember that when doing so, the application is re-
sponsible for every type of windowing event that might
normally occur. This means the application must connect the
various visual elements with their respective operating system
events.

When deploying an application on Adobe AIR, the window ob-
ject gets additional properties. Among those properties is
nativeWindow, which is a reference to the native window that
houses the current HTML document. Using the native window
reference, the appropriate methods can be called to trigger the
operating-system-specific event (or vice versa). In the case of
being able to minimize the window, the application can use

88 | Chapter 4: Adobe AIR Mini-Cookbook

NativeWindow.minimize(); it can use NativeWindow.close() in
the case of closing it:

window.nativeWindow.minimize();
window.nativeWindow.close();

The NativeWindow.close() method does not necessarily termi-
nate the application. If only one application window is availa-
ble, the application will terminate. If multiple windows are
available, they will close until only one window remains. Clos-
ing the last window terminates the application.

application.xml
<?xml version="1.0" encoding="utf-8" ?>
<application xmlns="http://ns.adobe.com/air/application/1.0">

 <id>com.adobe.demo.CustomControls</id>
 <name>Custom Controls</name>
 <version>1.0</version>
 <filename>Custom Controls</filename>
 <description>Adding Custom Window Controls</description>

 <initialWindow>

 <title>Custom Controls</title>
 <content>index.html</content>
 <systemChrome>none</systemChrome>
 <transparent>true</transparent>
 <visible>true</visible>
 <width>206</width>
 <height>206</height>

 </initialWindow>

</application>

index.html
<html>
<head>

<title>Custom Window Controls</title>

<style>
body {

Application Chrome | 89

 background-image: url('custom-chrome.gif');
 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
 font-size: 12px;
}

#closer {
 position: absolute;
 width: 70px;
 left: 68px;
 top: 105px;
}

#minimize {
 position: absolute;
 width: 70px;
 left: 68px;
 top: 75px;
}

textarea {
 position: absolute;
 left: 8px;
 right: 8px;
 bottom: 8px;
 top: 36px;
 border-color: #B3B3B3;
}

#title {
 position: absolute;
 font-weight: bold;
 color: #FFFFFF;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

<script>
function doClose()
{
 window.nativeWindow.close();
}

function doLoad()
{
 document.getElementById("minimize").addEventListener(
 "click", doMinimize);

90 | Chapter 4: Adobe AIR Mini-Cookbook

 document.getElementById("closer").addEventListener(
 "click", doClose);
}

function doMinimize()
{
 window.nativeWindow.minimize();
}
</script>

</head>
<body onload="doLoad()">

<input id="minimize" type="button" value="Minimize" />
<input id="closer" type="button" value="Close" />

</body>
</html>

Windowing

Create a New Window

Problem

You need to display an additional widow into which additional
content can be loaded.

Solution

Basic windows can be generated and maintained in a similar
fashion as traditional HTML content using the window.open()
method.

Discussion

The JavaScript window.open() method invokes a new window
similar to the way it would when used in the browser. Content
that gets loaded into the new window can come from a local
file, or URL endpoint. Similar to windows created using Java-
Script in the browser, there is finite control over the window

Windowing | 91

itself. The window properties that can be controlled are width,
height, scrollbars, and resizable.

var login = window.open('login.html', 'login', 'width = 300,
height = 200');

A native window is a better choice when additional control
over the new window is required. Native windows expose vir-
tually the entire functionality of the operating system, such as
control over minimize and maximize functionality, always in
front, full screen, and even removal of system chrome alto-
gether. The choice between using window.open() and Native
Window depends largely on the requirements for the window
and the overall portability of the JavaScript source code.

NOTE
You also can use the window.opener property, which is
commonly used in JavaScript to refer from a new win-
dow to the parent (creating) window.

<html>
<head>

<title>Creating a New Window</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script type="text/javascript">
function doLoad()
{
 document.getElementById('window').addEventListener(
 'click', doWindow);
}

function doWindow()
{

92 | Chapter 4: Adobe AIR Mini-Cookbook

 var login = window.open('login.html', null, 'width = 325,
 height = 145');
}

function doLogin(email, pass)
{
 alert('Welcome: ' + email);
}
</script>

</head>
<body onLoad="doLoad();">

<input id="window" type="button" value="Login" />

</body>
</html>

Login.html
<html>
<head>

<title>Login</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script>
function doLoad()
{
 document.getElementById('signIn').addEventListener(
 'click', doSignIn);
}

function doSignIn()
{
 var email = document.getElementById('email').value;
 var password = document.getElementById('password')
 .value;

 window.opener.doLogin(email, password);

Windowing | 93

}
</script>

</head>
<body onLoad="doLoad();">

<table>
 <tr>
 <td>Email:</td>
 <td><input id="email" name="email" /></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input id="password" name="password"
 type="password" /></td>
 </tr>
 <tr>
 <td colspan="2" align="right">
 <input id="signIn" type="button"
 value="Sign In" />
 </td>
 </tr>
</table>

</body>
</html>

Create a New Native Window

Problem

You need to display an additional window into which content
can be loaded, and you need to be able to fine-tune how the
new window appears.

Solution

The HTMLLoader class represents the root content of an HTML-
based Adobe AIR application, and has various methods for
creating and loading new native windows that require a high
degree of customization and control.

94 | Chapter 4: Adobe AIR Mini-Cookbook

Discussion

Creating and managing native windows with Adobe AIR is
highly customizable. As an example, depending on the appli-
cation requirements, you may want to hide the minimize and
maximize buttons. You may also want to control window z-
ordering, or force a particular window to always stay on top.
The NativeWindow and NativeWindowInitOptions classes offer
control over virtually all of these aspects of a native window.
Although you can access the native window directly through
the window.nativeWindow property, the HTMLLoader class pro-
vides much of the functionality for creating new native win-
dows.

Calling HTMLLoader.createRootWindow() returns a reference to
the HTMLLoader instance of the newly created window (not the
native window itself). The HTMLLoader.createRootWindow()
method can take up to four arguments controlling initial visi-
bility, initialization options, scroll bars, and window bounds
(i.e., the size and position on the screen). The initialization
options are passed through an instance of NativeWindowInitOp
tions, which must be created and configured prior to creating
the new native window. The NativeWindowInitOptions object
controls aspects of the window such as whether it is resizable,
or even whether it has any system chrome at all. The Native
WindowInitOptions constructor takes no arguments:

var options = new air.NativeWindowInitOptions();
var login = null;
var bounds = new air.Rectangle(
 (air.Capabilities.screenResolutionX - 270) / 2,
 (air.Capabilities.screenResolutionY - 150) / 2,
 270,
 150);

options.minimizable = false;
options.maximizable = false;
options.resizable = false;

login = new air.HTMLLoader.createRootWindow(false,
options, true, bounds);

Windowing | 95

All of the arguments for HTMLLoader.createRootWindow() have
default values which can be further explored in the Adobe AIR
documentation. Not all of the options an application may use
appear as initialization options. Additional options that may
be controlled on an instance of NativeWindow itself include the
window title, and whether it is always in front.

NOTE
In many cases, it is beneficial to start with an invisible
window. This will allow the window to size and position
itself, load the desired content, and then lay out and
render the application without impacting what is dis-
played. This technique falls into a broader classification
that is often referred to as perceived performance and is
a very important aspect to consider during development.

Once a reference to the HTMLLoader instance of a new native
window is obtained, you can load content into it via the
HTMLLoader.load() method. The HTMLLoader.load() method
takes a single argument which is a URLRequest instance that
points to the HTML content to be loaded into the new window:

<html>
<head>

<title>Creating a New Native Window</title>

<script src="AIRAliases.js" type="text/javascript"></script>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script type="text/javascript">
function doLoad()
{
 document.getElementById('window').addEventListener

96 | Chapter 4: Adobe AIR Mini-Cookbook

('click', doWindow);
}

function doWindow()
{
 var init = new air.NativeWindowInitOptions();
 var bounds = null;
 var win = null;
 var login = air.File.applicationDirectory.resolvePath
 ('login.html');

 bounds = new air.Rectangle((air.Capabilities.
 screenResolutionX - 325) / 2,
 (air.Capabilities.screenResolutionY - 145) / 2, 325, 145);

 init.minimizable = false;
 init.maximizable = false;
 init.resizable = false;

 win = air.HTMLLoader.createRootWindow(true, init, false,
 bounds);
 win.load(new air.URLRequest(login.url));
}
</script>

</head>
<body onLoad="doLoad();">

<input id="window" type="button" value="Login" />

</body>
</html>

Login.html
<html>
<head>

<title>Login</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

Windowing | 97

<script>
function doLoad()
{
 document.getElementById('signIn').addEventListener
 ('click', doSignIn);
}

function doSignIn()
{
 window.nativeWindow.close();
}
</script>

</head>
<body onLoad="doLoad();">

<table>
 <tr>
 <td>Email:</td>
 <td><input id="email" name="email" /></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input id="password" name="password" type=
 "password" /></td>
 </tr>
 <tr>
 <td colspan="2" align="right">
 <input id="signIn" type="button"
 value="Sign In" />
 </td>
 </tr>
</table>

</body>
</html>

Create Full-Screen Windows

Problem

For the purpose of enabling more viewing space or enabling
additional interactions, your application needs to be able to
run using the full screen.

98 | Chapter 4: Adobe AIR Mini-Cookbook

Solution

The HTMLLoader class provides the functionality to create new
native windows, which, when used in conjunction with the
NativeWindowInitOptions class, can create transparent and full-
screen native windows.

Discussion

The difference between using NativeWindowInitOptions for
full-screen display and using NativeWindowInitOptions for cus-
tom windows is an additional initialization option and setting
the window to fill the screen. To remove any OS-specific win-
dowing chrome, use the NativeWindowInitOptions.system
Chrome property. The NativeWindowInitOptions.systemChrome
property should be set to one of the two string constants found
in the NativeWindowSystemChrome class (see Table 4-2).

Table 4-2. String constants in NativeWindowSystemChrome

String constant Description

NativeWindowSystem
Chrome.STANDARD

This is the default for NativeWindow and reflects
the window chrome used on the specific operating
system.

NativeWindowSystem
Chrome.NONE

This indicates that no chrome should be present, and
requires that the application handle all traditional
windowing tasks.

To create a full-screen window without any chrome, set the
NativeWindowInitOptions.systemChrome property to NativeWin
dowSystemChrome.NONE. Window boundaries that match the
full-screen resolution can be passed when calling
HTMLLoader.createRootWindow(). The boundaries for the win-
dow are passed to the HTMLLoader.createRootWindow() method
as a Rectangle object which specifies horizontal and vertical
origination, as well as width and height. Depending on the re-
quirements for the application, an alternative approach would
be to call NativeWindow.maximize() or to set Native
Window.bounds directly when system chrome is set to Native
WindowSystemChrome.NONE.

Windowing | 99

NOTE
If you find yourself confronted with an application that
doesn’t shut down, but whose visible windows are all
closed, you’re probably dealing with one of a few differ-
ent challenges. The first is that you never set a size on a
NativeWindow. The second is that you never set a Native
Window to visible. The most common is that you used
NativeWindowSystemChrome.NONE, but never added any
content.

<html>
<head>

<title>Creating a Full Screen Window</title>

<script src="AIRAliases.js" type="text/javascript"></script>

<script type="text/javascript">
function doLoad()
{
 var init = new air.NativeWindowInitOptions();
 var win = null;
 var bounds = new air.Rectangle(0,
 0,
 air.Capabilities.
 screenResolutionX,
 air.Capabilities.
 screenResolutionY);

 init.minimizable = false;
 init.maximizable = false;
 init.resizable = false;
 init.systemChrome = air.NativeWindowSystemChrome.NONE;

 win = air.HTMLLoader.createRootWindow(true, init,
 true, bounds);
 win.load(new air.URLRequest('http://www.adobe.com/
 go/air'));
}
</script>

</head>
<body onLoad="doLoad();">

100 | Chapter 4: Adobe AIR Mini-Cookbook

</body>
</html>

File API

Write Text to a File from a String

Problem

A user has made changes to textual content in the application,
which need to be saved to the local disk for offline access.

Solution

You can write text through the File and FileStream classes that
are part of Adobe AIR.

Discussion

Before any reading or writing to disk takes place, a reference
to a file or directory must exist in the application. You can
establish a file reference in a number of ways, including via
programmatic manipulation and user selection. You accom-
plish both of these by using the File class. The File class also
contains static properties that point to common locations on
the operating system. These locations include the desktop di-
rectory, user directory, and documents directory:

var file =
air.File.applicationStorageDirectory.
resolvePath('myFile.txt');

The call to File.resolvePath() creates a reference to a file
named myFile.txt located in the application storage directory.
Once a reference has been established, it can be used in file I/
O operations. Note that this doesn’t actually create the file at
this point.

File API | 101

Physically reading and writing to disk is accomplished using
the FileStream class. The FileStream class does not take any
arguments in its constructor:

var stream = new air.FileStream();

With the file reference available and a FileStream object in-
stantiated, the process of writing data to disk can take place.
The type of data that can be written may be anything from
binary, to text, to value objects. You can access all of these by
using the respective FileStream method for that operation.

The first step in writing a file is to open it using the File
Stream.open() method. The FileStream.open() method takes
two arguments. The first argument is the file reference created
earlier that will be the destination of the output. The second
argument is the type of file access the application will need. In
the case of writing data to a file, the FileMode.WRITE static
property will be most common. A second possibility is File
Mode.APPEND, depending on the application requirements:

stream.open(file, air.FileMode.WRITE);

When writing text, an application should use File
Stream.writeMultiByte() to ensure that data is written with the
correct encoding. The FileStream.writeMultiByte() method
takes two arguments. The first argument is the String object
(text) that will be written to disk. The second argument is the
character set to be used. The most common character set is that
which the operating system is using, which is available on the
File class as File.systemCharset:

stream.writeMultiByte(document.getElementById
('txtNote').value, air.File.systemCharset);

Once the text has been written to the file, it is important to
close the file to avoid any corruption or blocking of access from
other applications. You close a file using the FileStream.close
() method.

102 | Chapter 4: Adobe AIR Mini-Cookbook

NOTE
XML data is already in textual format and, as such, can
be written to disk using this same series of steps. If the
application uses the XMLHttpRequest object, using the
myXml.responseText property alone may be adequate for
most situations.

<html>
<head>

<title>Writing a Text File</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}

#save {
 position: absolute;
 right: 5px;
 bottom: 5px;
}

textarea {
 position: absolute;
 left: 5px;
 right: 5px;
 top: 5px;
 bottom: 32px;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

<script type="text/javascript">
function doLoad()
{
 document.getElementById('save').
 addEventListener('click', doSave);
}

function doSave()

File API | 103

{
 var file = air.File.desktopDirectory.
 resolvePath('note.txt');
 var note = document.getElementById('note').value;
 var stream = new air.FileStream();

 stream.open(file, air.FileMode.WRITE);
 stream.writeMultiByte(note, air.File.systemCharset);
 stream.close();
}
</script>

</head>
<body onLoad="doLoad();">

<textarea id="note"></textarea>
<input id="save" type="button" value="Save" />

</body>
</html>

Synchronously Read Text from a File

Problem

You want to read the contents of a small text file into your
application.

Solution

Use the File and FileStream classes provided by Adobe AIR to
locate, open, and operate on text files.

Discussion

You can read small files that contain text content using the
FileStream.open() method. This method opens a file synchro-
nously for reading. Synchronous access requires less code, but
also blocks any additional user input until the data has been
read. When using asynchronous access, additional user input
is not blocked, but event handlers must be registered, which
results in more development time.

104 | Chapter 4: Adobe AIR Mini-Cookbook

NOTE
Although it is possible to access XML files as text, the
result of this approach is a string of text that can’t be
readily manipulated. Accessing an XML file for use as a
data source is often more easily handled using XMLHttpRe
quest or wrapper functionality offered by most Java-
Script libraries.

The steps for synchronously reading a file are almost always
the same:

1. Get a File reference.

2. Create a FileStream object.

3. Open the stream for synchronous access.

4. Call the appropriate FileStream read methods.

5. Close the file.

The first step to reading a text file is to get a reference to the
resource on disk. You can establish a reference by program-
matically designating a path using the appropriate property on
the File object, such as File.applicationStorageDirectory.
You will also have to call File.resolvePath() when using this
approach, as the static File class properties always return a
directory:

var file =
air.File.applicationStorageDirectory.
resolvePath('myFile.txt');

The FileStream class has an empty constructor and can be in-
stantiated anywhere in your application. The file reference just
established is used during the physical process of opening the
file. The mode for which the file is going to be opened must
also be specified.

The FileMode object serves no purpose other than to provide
constants for the types of file access that can be performed.
These operations are FileMode.READ, FileMode.WRITE, File
Mode.UPDATE, and FileMode.APPEND:

File API | 105

var stream = new air.FileStream();
stream.open(file, air.FileMode.READ);

You can use three FileStream methods to read character data
from a file. The FileStream.readUTF() and FileStream.readUTF
Bytes() methods are specifically tuned for UTF data.

If this is the target format of the data for the application, you
should use these methods directly. In the case of other char-
acter sets, you can use the FileStream.readMultiByte() meth-
od to specify the target format. Additional character sets are
specified in the form of a string, such as us-ascii. There is also
a convenience property on the File object to use the default
system character set, File.systemCharset.

You also need to specify the number of bytes to be read in the
case of FileStream.readUTFBytes() and FileStream.readMulti
Byte(). This sizing will depend largely on the requirements of
the application. When reading the entire file is required, you
can find the number of bytes available to be read on the File
Stream.bytesAvailable property:

var data = stream.readMultiByte(stream.bytesAvailable,
air.File.systemCharset);

Once the contents of a file have been read, it is important to
close the file. This operation will allow other applications to
access the file:

stream.close();

Although a demonstrable amount of flexibility has been pro-
vided by Adobe AIR, the actual process in its entirety is con-
siderably concise. This brevity is provided when performing
synchronous data access operations. Synchronous file access
should be reserved for smaller files regardless of reading or
writing character or binary data:

<html>
<head>

<title>Synchronous File Access</title>

<style type="text/css">
body {

106 | Chapter 4: Adobe AIR Mini-Cookbook

 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}

textarea {
 position: absolute;
 left: 5px;
 right: 5px;
 top: 5px;
 bottom: 5px;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

<script>
function doLoad()
{
 var data = null;
 var file = new air.File();
 var stream = null;

 file = air.File.applicationDirectory.resolvePath(
 'the-raven.txt');

 stream = new air.FileStream();
 stream.open(file, air.FileMode.READ);
 data = stream.readMultiByte(stream.bytesAvailable,
 air.File.systemCharset);
 stream.close();

 document.getElementById('editor').value = data;
}
</script>

</head>
<body onLoad="doLoad();">

<textarea id="editor"></textarea>

</body>
</html>

File API | 107

Asynchronously Read Text from a File

Problem

You want to read a large amount of text into your application
without impacting the user interface.

Solution

Use the File and FileStream classes to asynchronously operate
on the data; ensuring that the application execution is not
blocked while the file is being processed.

Discussion

Files containing a large amount of data should be read using
the FileStream.openAsync() method. This method opens a file
asynchronously for reading or writing and will not block ad-
ditional user input. Asynchronous file operations achieve this
goal by raising events during processing. The result is that event
listeners must be created and registered on the FileStream ob-
ject.

The steps for asynchronously reading a file are almost always
the same:

1. Get a File reference.

2. Create a FileStream object.

3. Create event handlers for processing data.

4. Add event listeners for asynchronous operations.

5. Open the stream for asynchronous access.

6. Close the file.

The first step to reading a text file is to get a reference to the
resource on disk. You can establish a reference by program-
matically designating a path using the appropriate property on
the File object, such as File.applicationStorageDirectory:

var file =
air.File.applicationStorageDirectory.
resolvePath('myFile.txt');

108 | Chapter 4: Adobe AIR Mini-Cookbook

A FileStream instance is necessary to read or write to the file:

stream = new air.FileStream();

Before registering event handlers on a FileStream object, you
must create those handlers. The events that are triggered by file
I/O operations using the FileStream class will always pass an
event object as an argument. The properties on the event object
will depend on the type of event being raised. This object can
be helpful in determining the target FileStream object, how
much data is available for reading, how much data is waiting
to be written, and more:

function doProgress(event)
{
 // Read all the data that is currently available
 var data = stream.readMultiByte(stream.bytesAvailable,
 air.File.systemCharset);

 // Append the most recent content
 document.getElementById("editor").value += data;

 // Close the file after the entire contents
 // have been read
 if(event.bytesLoaded == event.bytesTotal)
 {
 stream.close();
 }
}

Registering for events takes place using the addEventListener
() method:

stream.addEventListener(air.ProgressEvent.PROGRESS,
doProgress);

You can open a stream for asynchronous access using the File
Stream.openAsync() method. The FileStream.openAsync()
method takes two arguments that specify the file being ac-
cessed and the type of access being performed.

The FileMode object serves no purpose other than to provide
constants for the types of file access that can be performed.
These operations are FileMode.READ, FileMode.WRITE, File
Mode.UPDATE, and FileMode.APPEND:

File API | 109

stream.openAsync(file, air.FileMode.READ);

As soon as the file is opened and new data is available in the
stream, the ProgressEvent.PROGRESS event is triggered. De-
pending on the size of the file, as well as machine and network
characteristics, not all of the bytes may be read in a single pass.
In many cases, additional read operations take place, raising a
ProgressEvent.PROGRESS event for each iteration.

Once all of the data has been read from the file, an Event.COM
PLETE event is broadcast.

After the file has been read, it is important to close the file
stream to ensure that other applications can access it:

stream.close();

This example provides a baseline for the various types of asyn-
chronous access an application might choose to perform. In
this case, the contents of the file are read and placed into an
HTML text area each time more data is available. Asynchro-
nous processing also provides the means for random file access
(seek) without interrupting the user interface. An application
should always use asynchronous access whenever the size of a
file is in question.

<html>
<head>

<title>Asynchronous File Access</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}

textarea {
 position: absolute;
 left: 5px;
 right: 5px;
 top: 5px;
 bottom: 5px;
}

110 | Chapter 4: Adobe AIR Mini-Cookbook

</style>

<script type="text/javascript" src="AIRAliases.js"></script>

<script type="text/javascript">
var stream = null;

function doLoad()
{
 var file = air.File.applicationDirectory.resolvePath(
 'the-raven.txt');

 stream = new air.FileStream();
 stream.addEventListener(air.ProgressEvent.PROGRESS,
 doProgress);
 stream.openAsync(file, air.FileMode.READ);
}

function doProgress(event)
{
 var data = stream.readMultiByte(stream.bytesAvailable,
 air.File.systemCharset);

 document.getElementById('editor').value += data;

 if(event.bytesLoaded == event.bytesTotal)
 {
 stream.close();
 }
}
</script>

</head>
<body onLoad="doLoad();">

<textarea id="editor"></textarea>

</body>
</html>

File API | 111

Load Data from an XML File

Problem

You want to read XML data from a local file using common
JavaScript techniques, and you want to manipulate the Docu-
ment Object Model (DOM), not just the character data.

Solution

You can read a local XML document for its data using the
XMLHttpRequest object, and by using a File object reference as
the URI endpoint as opposed to a web address.

Discussion

Most JavaScript libraries, and virtually every data-oriented
Ajax application, makes use of the XMLHttpRequest object to
load data. This is a common means to accessing data from the
client without refreshing the page, and it is core to Ajax devel-
opment techniques. Adobe AIR includes support for the
XMLHttpRequest object, which can be used for data access.

The XMLHttpRequest.open() method expects three arguments.
The first argument is the HTTP method to be used for the call,
which is commonly GET or POST. The third argument tells the
object whether it should make the request asynchronously.
The challenge in an Adobe AIR application is the second ar-
gument, which tells the object where to get its data:

var xml = new XMLHTTPRequest();

xml.open('GET', 'myData.xml', true);

This URI endpoint generally points to a remote server. This
can still happen in an application that is online, but as Adobe
AIR applications can also work offline, the endpoint needs to
be pointed to a local resource. Rather than pass an endpoint
to a remote server, a File reference can be provided:

var file = air.File.applicationStorageDirectory.resolve
('myData.xml');
var xml = new XMLHttpRequest();

112 | Chapter 4: Adobe AIR Mini-Cookbook

xml.onreadystatechange = function()
{
 if(xml.readystate == 4)
 {
 // Work with data
 }
}

xml.open('GET', file.url, true);
xml.send(null);

The key distinction to make for this example is the use of the
File.url property, which the XMLHttpRequest object under-
stands and uses to access the appropriate data. Using this
approach results in a traditional DOM that can be used to tra-
verse and manipulate the XML data in the file. Additionally,
you can use this approach with common JavaScript libraries.

Given
<rolodex>
 <contact>
 <first>Kevin</first>
 <last>Hoyt</last>
 </contact>
 ...
</rolodex>

Example
<html>
<head>

<title>Reading XML Data (using XMLHttpRequest)</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

File API | 113

<script type="text/javascript">
var contacts = air.File.applicationDirectory.resolvePath
('rolodex.xml');

function doLoad()
{
 var xml = new XMLHttpRequest();

 xml.onreadystatechange = function()
 {
 var elem = null;
 var first = null;
 var last = null;
 var rolodex = null;

 if(xml.readyState == 4)
 {
 rolodex = xml.responseXML.documentElement.
 getElementsByTagName
('contact');

 for(var c = 0; c < rolodex.length; c++)
 {
 first = rolodex[c].getElementsByTagName
 ('first')[0].textContent;
 last = rolodex[c].getElementsByTagName
 ('last')[0].textContent;

 elem = document.createElement('div');
 elem.innerText = first + " " + last;
 document.body.appendChild(elem);
 }
 }
 }

 xml.open('GET', contacts.url, true);
 xml.send(null);
}
</script>

</head>
<body onLoad="doLoad();">

</body>
</html>

114 | Chapter 4: Adobe AIR Mini-Cookbook

Create a Temporary File

Problem

An application needs to store transient information during file
processing, and cannot assume that adequate memory exists
to store the data in memory.

Solution

Creating temporary files with File.createTempFile() is an ide-
al means to store transient information while relieving the
overhead of additional memory.

Discussion

The File class contains a static File.createTempFile() method
that you can use to establish a temporary file. The temporary
file is created at a destination determined by the operating sys-
tem. Temporary files are also automatically given a unique
name to avoid collision with other files that may be present:

var temp = air.File.createTempFile();

Once a temporary file has been created, you can use the File
and FileStream APIs to interact with the file as you would any
other file.:

var stream = new air.FileStream();

stream.open(temp, air.FileMode.WRITE);
stream.writeMultiByte('Hello', air.File.systemCharset);
stream.close();

You can use the File.moveTo() and File.moveToAsync() meth-
ods after the fact, should you decide that it is necessary to keep
the temporary file for later reference. Both move methods take
two arguments. The first argument is a File reference to the
destination location. The second argument is a Boolean value
that controls overwriting any existing file. If the second argu-
ment is set to false, and a collision occurs, the application
throws an error:

File API | 115

var move = air.File.desktopDirectory.resolve('temp.txt');

try
{
 temp.moveTo(move, false);
} catch(ioe) {
 alert('Can\'t move file:\n' + ioe.message);
}

The JavaScript try/catch block will receive an error object of
type IOError. The IOError class has available numerous prop-
erties that you can use for further evaluation. The exception in
the previous code snippet raises the error message that is gen-
erated by Adobe AIR:

<html>
<head>

<title>Creating a Temporary File</title>

<script type="text/javascript" src="AIRAliases.js"></script>

<script type="text/javascript">
function doLoad()
{
 var stream = new air.FileStream();
 var temp = air.File.createTempFile();
 var move = air.File.desktopDirectory.resolvePath
 ('temp.txt');

 stream.open(temp, air.FileMode.WRITE);
 stream.writeMultiByte('Hello World!', air.File.
 systemCharset);
 stream.close();

 try
 {
 temp.moveTo(move, false);
 } catch(ioe) {
 alert('Could not move temporary file:\n' +
 ioe.message);
 }

}
</script>

116 | Chapter 4: Adobe AIR Mini-Cookbook

</head>
<body onLoad="doLoad();">

</body>
</html>

Iterate the Contents of a Directory

Problem

The application is required to display information about a di-
rectory as part of the user interface.

Solution

Use the File.browseForDirectory() method to prompt the user
to select a directory, and then use the File.getDirectoryList
ing() method to iterate through the contents of the directory.

Discussion

The File class provides numerous properties that you can use
to get specific information about files on disk. Also, various
methods on the File class pertain to getting a directory listing.
Although an application can specify a directory programmat-
ically, you can use File.browseForDirectory() to prompt the
user to select a directory using the native dialog. Once a loca-
tion on the local disk has been specified, the File.getDirector
yListing() method returns an Array of File objects for the
currently referenced directory.

Before prompting the user to select a directory using the native
dialog, the application needs to establish and register an event
handler for Event.SELECT. The Event.target property on the
raised event object will contain a reference to the File object
that invoked the browse operation.

The File.browseForDirectory() method takes one argument,
a String representing additional information that will be
placed in the dialog box. This String is not the title of the di-

File API | 117

alog, as is the case with File.browseForOpen(). There is also no
need to specify FileFilter objects, as the dialog box presented
is specific to directories, and no files will be displayed.

After the user has selected a directory, the registered event
handler will be called. The file reference, whether using a class
or global reference, or Event.target, will now contain the path
to the selected directory. At this point, File.getDirectoryList
ing() can be called, which returns an Array of File objects for
the selected directory (as represented by the file reference). The
File.getDirectoryListing() method takes no arguments:

var listing = directory.getDirectoryListing();

The File class can represent both files and directories on the
local filesystem. You can use the File.isDirectory property to
determine whether a specific File instance references a file or
a directory.

NOTE
See the API documentation for a complete list of data
exposed by the File API.

<html>
<head>

<title>Selecting a Directory</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

<script type="text/javascript">
var directory = null;

function doBrowse()

118 | Chapter 4: Adobe AIR Mini-Cookbook

{
 directory.browseForDirectory('Select a directory of
 files:');
}

function doLoad()
{
 directory = air.File.documentsDirectory;
 directory.addEventListener(air.Event.SELECT, doSelect);

 document.getElementById('browse').addEventListener
 ('click', doBrowse);
}

function doSelect(e)
{
 var files = directory.getDirectoryListing();
 var elem = null;
 var name = null;
 var mod = null;
 var size = null;

 for(var f = 0; f < files.length; f++)
 {
 name = files[f].name;

 mod = files[f].modificationDate;
 mod = (mod.month + 1) + '/' + mod.date + '/' +
 mod.fullYear;

 size = Math.ceil(files[f].size / 1000) + ' KB';

 elem = document.createElement('div');
 elem.innerText = name + ' is ' + size + '
 and was last modified on ' + mod;

 document.body.appendChild(elem);
 }
}
</script>

</head>
<body onLoad="doLoad();">

<input id="browse" type="button" value="Browse" />

File API | 119

</body>
</html>

File Pickers

Browse for a File

Problem

An application needs to prompt the user to select a file to open
from the local system using a native dialog.

Solution

The File class allows an application to prompt the user to se-
lect one or more files of a specific type from the local system.

Discussion

The File class provides numerous browse methods that
present the native dialog for the specified operation. In the case
of browsing for a single file to open, the appropriate method is
File.browseForOpen(). This method takes a required string ar-
gument for the title of the dialog box, and an optional Array of
FileFilter objects.

FileFilter objects allow an application to filter the viewable
files in the native dialog box. This argument is null by default,
which allows the user to select any file to which he would nor-
mally have access (i.e., not hidden files). An application can
provide as many filters as necessary, by placing multiple File
Filter objects in an Array and passing that Array as the second
argument to File.browseForOpen().

None of the browse methods on the File class is static, and as
such, an existing reference to a valid File object must first be
available. The directory represented by that File object refer-
ence will be selected by default when the dialog is displayed:

var file = air.File.documentsDirectory;
var filters = new Array();

120 | Chapter 4: Adobe AIR Mini-Cookbook

filters.push(new FileFilter("Image Files", "*.jpg"));
file.browseForOpen(file, filters);

When a file selection has been made, Adobe AIR will raise an
event in the issuing application. To catch that event, the ap-
plication must have first registered an event listener. The event
that gets raised is Event.SELECT, and an event object will be
passed to the handler:

var file = air.File.documentsDirectory;
var filters = new Array();

filters.push(new air.FileFilter("Image Files", "*.jpg"));

file.addEventListener(air.Event.SELECT, doSelect);
file.browseForOpen(file, filters);

function doSelect(event)
{
 alert(file.nativePath);
}

A useful property of the Event object that is sent to the handler
is the “target” which contains a reference to the originating
File object. Nothing is returned from the dialog operation to
be assigned to a File object, as the originating object will now
hold a reference to the directory selected by the user. For this
purpose, it may be beneficial to have a class or global reference
to the File object, and even to reuse it:

<html>
<head>

<title>Selecting a File</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

File Pickers | 121

<script type="text/javascript">
var file = null;

function doBrowse()
{
 var filters = new Array();

 filters.push(new air.FileFilter('Image Files',
 '*.jpg'));
 file.browseForOpen('Select Photo', filters);
}

function doLoad()
{
 file = air.File.documentsDirectory;
 file.addEventListener(air.Event.SELECT, doSelect);

 document.getElementById('browse').
 addEventListener('click', doBrowse);
}

function doSelect(e)
{
 var elem = document.createElement('div');

 elem.innerText = file.nativePath;
 document.body.appendChild(elem);
}
</script>

</head>
<body onLoad="doLoad();">

<input id="browse" type="button" value="Browse" />

</body>
</html>

Browse for Multiple Files

Problem

An application needs to prompt the user to select multiple files
from the local system using the native dialog.

122 | Chapter 4: Adobe AIR Mini-Cookbook

Solution

Use the File.browseForOpenMultiple() method to prompt the
user with a dialog box that will allow for multiple file selection.

Discussion

Using the File class to open a single file is predominantly the
same as using the File class to open multiple files. In the case
of allowing the user to select multiple files, the appropriate
method to use is File.browseForOpenMultiple(). The
File.browseForOpenMultiple() method takes the same two ar-
guments that the File.browseForOpen() method takes: a
String to be used in the title of the dialog, and an Array of
FileFilter objects.

Once the user has selected the files from the dialog, FileListE
vent.SELECT_MULTIPLE will be broadcast. The event object that
is sent to the handler will be of type FileListEvent. The File
ListEvent class contains a files property, which will be an
Array of File objects representing the files that the user selec-
ted:

var file = air.File.documentsDirectory;

file.addEventListener(air.FileListEvent.SELECT_MULTIPLE,
doSelect);

function doSelect(event)
{
 for(var f = 0; f < event.files.length; f++)
 {
 ...
 }
}

Here is the complete code:

<html>
<head>

<title>Selecting Multiple Files</title>

<style type="text/css">
body {

File Pickers | 123

 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

<script type="text/javascript">
var file = null;

function doBrowse()
{
 var filters = new Array();

 filters.push(new air.FileFilter('Image Files',
 '*.jpg'));
 file.browseForOpenMultiple('Select Photos', filters);
}

function doLoad()
{
 file = air.File.documentsDirectory;
 file.addEventListener(air.FileListEvent.SELECT_MULTIPLE,
 doSelect);

 document.getElementById('browse').addEventListener
 ('click', doBrowse);
}

function doSelect(e)
{
 var elem = null;
 var name = null;
 var size = null;

 for(var f = 0; f < e.files.length; f++)
 {
 name = e.files[f].name;
 size = Math.ceil(e.files[f].size / 1000);

 elem = document.createElement('div');
 elem.innerText = name + ' (' + size + ' KB)';

 document.body.appendChild(elem);
 }
}

124 | Chapter 4: Adobe AIR Mini-Cookbook

</script>

</head>
<body onLoad="doLoad();">

<input id="browse" type="button" value="Browse" />

</body>
</html>

Browse for a Directory

Problem

Application requirements dictate that you allow users to select
a directory in which they will store data.

Solution

Use the File.browseForDirectory() method to prompt the user
to select a directory.

Discussion

The File.browseForDirectory() method creates a native dialog
box that allows users to select a directory. The method takes a
required String argument, which will be used to provide ad-
ditional information to the user about the purpose of the
selected directory.

When a directory selection has been made, Adobe AIR will
raise an event in the issuing application. To catch that event,
the application must have first registered an event listener. The
event that gets raised is Event.SELECT, and an event object will
be passed to the handler:

var file = air.File.applicationStorageDirectory;

file.addEventListener(air.Event.SELECT, doSelect);
file.browseForDirectory("Where do you want to store your
photos?");

function doSelect(event)
{

File Pickers | 125

 alert(file.nativePath);
}

Nothing is returned from the dialog operation to be assigned
to a File object, as the originating object will now hold a ref-
erence to the directory selected by the user. For this purpose,
it may be beneficial to have a class or global reference to the
File object, and even to reuse it:

<html>
<head>

<title>Selecting a Directory</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

<script type="text/javascript">
var directory = null;

function doBrowse()
{
 directory.browseForDirectory('Select a directory of
 files:');
}

function doLoad()
{
 directory = air.File.documentsDirectory;
 directory.addEventListener(air.Event.SELECT, doSelect);

 document.getElementById('browse').addEventListener
 ('click', doBrowse);
}

function doSelect(e)
{
 var files = directory.getDirectoryListing();
 var elem = null;

126 | Chapter 4: Adobe AIR Mini-Cookbook

 var name = null;
 var mod = null;
 var size = null;

 for(var f = 0; f < files.length; f++)
 {
 name = files[f].name;

 mod = files[f].modificationDate;
 mod = (mod.month + 1) + '/' + mod.date + '/' +
 mod.fullYear;

 size = Math.ceil(files[f].size / 1000) + ' KB';

 elem = document.createElement('div');
 elem.innerText = name + ' is ' + size + '
 and was last modified on ' + mod;

 document.body.appendChild(elem);
 }
}
</script>

</head>
<body onLoad="doLoad();">

<input id="browse" type="button" value="Browse" />

</body>
</html>

Service and Server Monitoring

Monitor Connectivity to an HTTP Server

Problem

Your application needs to monitor and determine whether a
specific HTTP server can be reached.

Service and Server Monitoring | 127

Solution

Use the URLMonitor class to detect network state changes in
HTTP/S endpoints.

Discussion

Service monitor classes work through event notification and
subsequent polling of the designated endpoint. Service moni-
toring is not an integrated function of Adobe AIR directly, and
needs to be added before it can be used.

The classes for service monitoring are contained in the service
monitor.swf file, which you can find in the frameworks direc-
tory of the Adobe AIR SDK. You should copy this file into the
application project folder; you can include it through the use
of the HTML SCRIPT tag. You also need to include the service
monitor.swf file in the packaged Adobe AIR application. The
SCRIPT tag used to include service monitoring functionality
must come before the AIRAliases.js file is declared. You also
must specify the content type on the SCRIPT tag as application/
x-shockwave-flash:

<script src="servicemonitor.swf"
type="application/x-shockwave-flash"></script>
<script src="AIRAliases.js"
type="text/javascript"></script>

The URLMonitor class takes a single argument in the construc-
tor, an instance of the URLRequest class. The URLRequest con-
structor takes a String that represents the URL service
endpoint to query. The URLRequest class also contains infor-
mation about how to query the endpoint (i.e., GET, POST), and
any additional data that should be passed to the server:

var request = air.URLRequest('http://www.adobe.com') ;
var monitor = new air.URLMonitor(request);

The URLMonitor class will raise a StatusEvent.STATUS event
when the network status changes. Once the event handler has
been registered, the URLMonitor instance can be told to start
watching for network start changes:

128 | Chapter 4: Adobe AIR Mini-Cookbook

monitor.addEventListener(air.StatusEvent.STATUS, doStatus);
monitor.start();

After a network change has been propagated as an event, you
can use the URLMonitor.available property on the originating
URLMonitor instance to check for the presence of a connection.
The URLMonitor.available property returns a Boolean value
that reflects the state of the network. As it is necessary to query
the originating URLMonitor instance for network availability,
you should declare the object in a scope that is accessible across
the application:

<html>
<head>

<title>Connectivity to an HTTP Server</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script src="servicemonitor.swf"
type="application/x-shockwave-flash"></script>
<script type="text/javascript"
src="AIRAliases.js"></script>

<script type="text/javascript">
var monitor = null;

function doLoad()
{
 var request = new air.URLRequest
 ('http://www.adobe.com');

 monitor = new air.URLMonitor(request);
 monitor.addEventListener(air.StatusEvent.STATUS,
 doStatus);
 monitor.start();
}

function doStatus(e)
{

Service and Server Monitoring | 129

 var elem = document.createElement('div');

 elem.innerText = monitor.available;

 document.body.appendChild(elem);
}
</script>

</head>
<body onLoad="doLoad();">

</body>
</html>

Monitor Connectivity to a Jabber Server

Problem

A Jabber chat client is required to reflect network presence in
the user interface, but the endpoint is a Jabber server on a spe-
cific port, and not HTTP/S.

Solution

Use the SocketMonitor class to detect network state changes
against TCP/IP socket endpoints.

Discussion

The service monitoring features are not built into Adobe AIR
directly, and need to be added before they can be used. The
servicemonitor.swf file, which is included in the Adobe AIR
SDK, must be imported as an application resource and inclu-
ded via an HTML SCRIPT tag. The content type on the SCRIPT
tag must be specified, and the SCRIPT tag for the service monitor
classes must come before the AIRAliases.js SCRIPT tag.

<script src="servicemonitor.swf"
type="application/x-shockwave-flash"></script>
<script src="AIRAliases.js"
type="text/javascript"></script>

130 | Chapter 4: Adobe AIR Mini-Cookbook

The SocketMonitor class takes two arguments in the construc-
tor: a String that represents the host endpoint, and a port on
which the server is listening:

var host = 'im.mydomain.com';
var port = 5220;
var monitor = new air.SocketMonitor(host, port);

The SocketMonitor class will raise a StatusEvent.STATUS event
when the network status changes. Once the event handler has
been registered, calling the SocketMonitor.start() method will
start watching the network for changes:

monitor.addEventListener(air.StatusEvent.STATUS, doStatus);
monitor.start();

After a network change has been propagated as an event, you
can use the SocketMonitor.available property on the originat-
ing SocketMonitor instance to check for the presence of a
connection. The SocketMonitor.available property returns a
Boolean value that reflects the state of the network. As a best
practice, you should declare the SocketMonitor object in a
scope that is accessible across the application and is referenced
directly during event handling:

<html>
<head>

<title>Connectivity to a Jabber Server</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script src="servicemonitor.swf"
type="application/x-shockwave-flash"></script>
<script type="text/javascript" src="AIRAliases.js"></script>

<script type="text/javascript">
var monitor = null;

function doLoad()

Service and Server Monitoring | 131

{
 monitor = new air.SocketMonitor
 ('im.mydomain.com', 1234);
 monitor.addEventListener
 (air.StatusEvent.STATUS, doStatus);
 monitor.start();
}

function doStatus(e)
{
 var elem = document.createElement('div');

 elem.innerText = monitor.available;

 document.body.appendChild(elem);
}
</script>

</head>
<body onLoad="doLoad();">

</body>
</html>

Online/Offline

Cache Assets for Offline Use

Problem

You want to load an asset from a URL and store it for use when
the application is offline.

Solution

Use the File I/O API to save the requested asset to the appli-
cation’s store and read that file on subsequent requests.

Discussion

In this example, we will load an XML file that is at a known
URL. Once the data has been loaded, it will be saved to the

132 | Chapter 4: Adobe AIR Mini-Cookbook

local disk, and on subsequent requests for the document it will
be loaded from the local disk instead of from the remote loca-
tion.

First, we will use the XMLHttpRequest object to load the XML
data from the remote location. The XMLHttpRequest.open()
method takes three arguments. The first argument is the meth-
od of the HTTP request that is being made. The second
argument is the URI of the location of the data being loaded.
The third argument is a Boolean that specifies whether the op-
eration will be asynchronous.

Once we have specified these arguments in the open method,
we will call the send method. The send method takes a single
argument that contains the content that is to be sent with the
request. In our case, we won’t send any data with the request:

var xml = new XMLHttpRequest();
xml.open("GET", "http://www.foo.com/data.xml", true);
xml.send(null);

Because we are loading the data asynchronously, we need to
create a handler for the response which is called once the data
has loaded from the server. This handler will be added before
the send method is called. Within this handler, we will save the
data that is located in the responseText property of the
XMLHttpRequest instance to a known location on the local file-
system for retrieval in subsequent requests. We cover reading
and writing text to the local system elsewhere in the book, and
therefore we won’t cover it in detail here:

xml.onreadystatechange = function()
{
 if(xml.readyState == 4) // the request is complete
 {
 // write the data to the local system
 var file =
 air.File.applicationStorageDirectory.resolvePath
 ("data.xml");
 var fileStream = new air.FileStream();
 fileStream.open(file, air.FileMode.WRITE);
 fileStream.writeMultiByte(xml.responseText ,
 air.File.systemCharset);
 fileStream.close();

Online/Offline | 133

 }
}

Before each request of the data, we will need to check whether
the data.xml file exists. If it exists, we do not need to load the
file using the XMLHttpRequest object and can use the File API to
load it from the disk. This allows us to load the data even if the
user is not currently online:

var data = null;
var file = air.File.applicationStorageDirectory.resolvePath
("data.xml");

if(file.exists)
{
 var fileStream = new air.FileStream();
 fileStream.open(file, air.FileMode.READ);
 data =
 fileStream.readMultiByte(fileStream.bytesAvailable,
 air.File.systemCharset);
 fileStream.close();
}
else
{
 // read the data via XMLHttpRequest and write that
 // data to the file system
}

Here is the complete example:

<html>
<head>
 <title>Caching Assets for Offline Use</title>
 <script src="AIRAliases.js"></script>
 <script>

 var file =
 air.File.applicationStorageDirectory.resolvePath
 ("data.xml");

 function onLoad()
 {
 if(file.exists)
 {
 var fileStream = new air.FileStream();
 fileStream.open(file, air.FileMode.READ);
 document.getElementById("dataText").value =

134 | Chapter 4: Adobe AIR Mini-Cookbook

 fileStream.readMultiByte(
 fileStream.bytesAvailable,
 air.File.systemCharset);
 fileStream.close();
 }
 else
 {
 var xml = new XMLHttpRequest();
 xml.open("GET",
 "http://www.foo.com/data.xml",
 true);

 xml.onreadystatechange = function()
 {
 if(xml.readyState == 4) // the request
is complete
 {
 var file = air.File.
applicationStorageDirectory. resolvePath("data.xml");
 var fileStream = new air.FileStream();
 fileStream.open(file, air.
FileMode.WRITE);
 fileStream.writeMultiByte(xml.
responseText , air.File. systemCharset);
 fileStream.close();

 document.getElementById(
"dataText").value = xml. responseText;
 }
 }

 xml.send(null);
 }
 }
 </script>
</head>
<body onload="onLoad()">
 <textarea id="dataText"></textarea>
</body>
</html>

Online/Offline | 135

Drag-and-Drop

Use Drag—and-Drop from HTML

Problem

You want to allow users to drag files, images, text, and other
data types into and out of HTML-based AIR applications.

Solution

By using Adobe AIR’s Drag and Drop implementation in Java-
Script, developers can react to drag-and-drop operations that
occur on HTML DOM objects.

NOTE
Adobe AIR’s support for drag-and-drop within HTML
content is based on the WebKit implementation. You
can find more information on this at http://developer.ap
ple.com/documentation/AppleApplications/Conceptual/
SafariJSProgTopics/Tasks/DragAndDrop.html.

Discussion

One of the benefits of developing for the desktop is providing
users with a more integrated experience when interacting with
multiple applications. One of the most frequently used user
gestures is to drag-and-drop files, data, and other elements be-
tween applications and the desktop and between the applica-
tions themselves.

This example will demonstrate how you can accept text being
dragged items into your application as well as support dragging
elements out. It will also show you how to modify the drag
effect to demonstrate for the user what type of drag operations
he can perform with the element he is dragging as well as the
ability to modify the drag image.

136 | Chapter 4: Adobe AIR Mini-Cookbook

http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/DragAndDrop.html
http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/DragAndDrop.html
http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/DragAndDrop.html

Two flows are important to consider when using drag-and-
drop operations in HTML. First, we will examine the flow for
HTML elements that are drag-enabled:

1. The element specifies that it is available for drag opera-
tions.

2. The user selects the element and starts to drag it.

3. The element receives an ondragstart event and sets the
data which will be transferred, as well as specifies which
drag operations are supported. It can also specify a cus-
tom drag image at this time.

4. The element receives ondrag events while it is being
dragged.

5. The user drops the element being dragged and receives
an ondragend event.

The typical flow for HTML elements that want to receive drop
operations is as follows:

1. The user drags an item over the element listening for
drop events.

2. The element receives an ondragenter event and specifies
which drop operations are allowed.

3. The element receives ondragover operations continu-
ously as the item is being dragged over.

4. The user drops the item and the receiving element re-
ceives an ondrop event.

5. Alternatively, if the user moves the dragged item outside
the boundaries of the listening element, it will receive an
ondragleave event.

Linked text and highlighted text elements are drag-enabled by
default. To disable this functionality, use the -khtml-user-
drag:none style. Conversely, to enable other HTML elements
to be drag-enabled, use the -khtml-user-drag:element style.

To manipulate the data that is being transferred as part of the
drag operation, listen for the ondragstar operation and use the
dataTransfer object that is attached to the event object. The

Drag-and-Drop | 137

dataTransfer object has two data modification methods: get
Data and setData. The setData method takes two parameters:
the MIME type and the string of data that conforms to that
type. You can call the setData method multiple times, and it
allows you to store multiple data types. For example, if you
wanted to specify a text/plain type and a text/uri- list type,
you would do the following:

function dropStartListener(event)
{
 event.dataTransfer.setData("text/plain", "Adobe");
 event.dataTransfer.setData("text/uri-list",
 "http://www.adobe.com");
}

If setData is called for a MIME type that already exists on the
element being dragged, that data will be overwritten. Retriev-
ing data from an element that is being dragged can occur only
within an ondrop event handler. The getData method takes a
MIME type as its only parameter and returns the value of the
MIME type if it exists on the element being dragged. For ex-
ample:

function dropListener(event)
{
 alert(event.dataTransfer.getData("text/plain"));
// Adobe
}

AIR supports the following MIME types:

Text “text/plain”

HTML “text/html”

URL “text/uri-list”

Bitmap “image/x-vnd.adobe.air.bitmap”

File list “application/x-vnd.adobe.air.file-list”

When a user is dragging data from one application to another,
or from one location in your application to another, you may
want to indicate to the user which operations (copy, link, or
move) are available. By using the effectAllowed and dropEf
fect properties of the dataTransfer object, you can specify

138 | Chapter 4: Adobe AIR Mini-Cookbook

which operations are allowed. You can see the list of available
values for these properties by reading the WebKit documen-
tation referenced earlier.

The effectAllowed property tells the system what operations
the source element supports. The dropEffect property specifies
the single operation that the current target receiving the drag
event supports. The operating system then uses this informa-
tion regarding which effects the source and destination targets
support, and allows the user to make that choice. Generally,
the user chooses by using the system’s standard keyboard
modifiers.

To modify the drag image that is displayed to the user as she
is dragging the item, use the setDragImage method of the data
Transfer object. This method takes three arguments. The first
argument is a JavaScript Image object which references the im-
age that will appear to the user. The second and third argu-
ments are the respective X and Y offsets that will modify the
position of that image relative to the cursor’s X and Y positions
on-screen.

Assume that we had the following HTML element in our docu-
ment. Notice that we explicitly specify that this element is
draggable using the -khtml-user-drag:element style:

<div id="box" style="-khtml-user-drag:element"
 ondragstart="onBoxDragStart
(event)"></div>

We can then change the image by listening for the ondrag
start event and modify the image using the setDragImage
method:

 // First create a reference to our drag image in the
 // main document scope.
 var dragImage = new Image();
 dragImage.src = "app:/images/dragImage.png";

 // This method gets called when a drag starts
 // on our 'box' element.
 function onBoxDragStart(event)
 {
 // Set the data we would like to be transferred.

Drag-and-Drop | 139

 event.dataTransfer.setData("text/plain",
 "This is a red box!");

 // Modify the drag image to use the reference
 // we created above.
 event.dataTransfer.setDragImage(dragImage, 0, 0);
 }

Here is the full example:

<html>
<head>
 <title>HTML Drag Test</title>
 <script src="AIRAliases.js" />
 <script>

 // DROP EVENTS

 function onDragEnter(event)
 {
 air.trace("onDragEnter");
 event.dataTransfer.dropEffect = "copy";
 event.preventDefault();
 }

 function onDrop(event)
 {
 air.trace("onDrop");
 air.trace(event.dataTransfer.getData("text/plain"));
 air.trace(event.dataTransfer.getData("text/uri-list"));
 }

 function onDragOver(event)
 {
 event.preventDefault();
 }

 // DRAG EVENTS

 function onDragStart(event)
 {
 air.trace("onDragStart");
 event.dataTransfer.setData("text/plain",
 "This is the URL I am dragging");
 // We overwrite the default URL specified in the
 // anchor tag with a different URL. When the data
 // is dropped, this is the URL that will be

140 | Chapter 4: Adobe AIR Mini-Cookbook

 // transferred.
 event.dataTransfer.setData("text/uri-list",
 "http://www.foo.com");
 event.dataTransfer.effectAllowed = "all";
 }

 function onDragEnd(event)
 {
 air.trace("onDragEnd");
 }

 var dragImage = new Image();
 dragImage.src = "app:/images/dragImage.png";

 function onBoxDragStart(event)
 {
 event.dataTransfer.setData("text/plain", "This is a
red box!");
 event.dataTransfer.setDragImage(dragImage, 0, 0);
 }

 </script>
</head>
<body>
 <div style="margin: 0px auto; width: 80%;
 background-color: white; border: solid black;">
 <div style="background-color: lightblue;
 border-bottom: solid black; padding: 3px;
 font-family: sans-serif; font-weight: bold;"
 ondragenter="onDragEnter(event)"
 ondragover="onDragOver(event)"
 ondrop="onDrop(event)">
 Drop Here
 </div>
 <p>
 <span id="content" ondragstart="onDragStart(event)"
 ondragend="onDragEnd(event)">
 Drag Me
 (text/uri-list)

 </p>
 <p>
 <div id="box" style="-khtml-user-drag:element"
 ondragstart="
onBoxDragStart(event)"></div>
 </p>

Drag-and-Drop | 141

 </div>
</body>
</html>

Embedded Database
Adobe AIR includes an embedded SQLite database that AIR
applications can leverage. SQLite is a compact open source
database that supports ACID transactions, requires zero con-
figuration, implements most of SQL92, and supports strings
and BLOBs up to 2 GB in size. All database information is
stored in a single file on disk, which you can freely share be-
tween machines, even if they have different byte orders.

NOTE
You can find more information about SQLite on the
project web site, at http://www.sqlite.org.

Adobe AIR supports both synchronous and asynchronous da-
tabase transactions. A synchronous transaction will block ad-
ditional user interface interaction until the transaction has
been completed, but can be substantially less effort to code.
An asynchronous approach will allow additional interaction
with the user interface while the transaction is processing,
though it may require a substantial amount of code for event
handlers. All of the following examples showcase an asynchro-
nous approach.

Connect to a Database

Problem

You need to connect to a local database prior to working with
the schema or altering data.

142 | Chapter 4: Adobe AIR Mini-Cookbook

http://www.sqlite.org

Solution

You can create and connect to a database using the single
SQLConnection.open() method.

Discussion

SQLite stores all database information in a single file on disk.
This means that before an application can access a database, it
must first have a reference to the file. A single application might
choose to access any number of database files. Databases are
managed through the SQLConnection data type.

You can obtain a reference to the database file through the
File.resolvePath() method, which takes a single argument:
the name of the file that will be referenced. Files that do not
yet exist can have a reference, and the File.exists property
returns a Boolean to determine that file’s presence on disk:

var db = new air.SQLConnection();
var file =
air.File.applicationStorageDirectory.
resolvePath('mycrm.db');

The extension to the database file is not specific and can be
named as necessary for the application.

To operate using asynchronous database transactions, an ap-
plication must first create and register a handler for the events
in which it is interested. In the case of establishing a connection
to a database, the SQLEvent.OPEN event will be monitored.
Among various other properties, you can use the SQLE
vent.type property to determine the status of the database.

db.addEventListener(air.SQLEvent.OPEN, doDbOpen);

function doDbOpen(event)
{
 alert('Connected');
}

The SQLConnection.open() method can take a number of dif-
ferent arguments. The most common arguments are the file
reference to the database, and a String value indicating the

Embedded Database | 143

mode in which the database should be opened. The default
value of SQLMode.CREATE will create the database if it does not
exist, and then will establish a connection to the database.

<html>
<head>

<title>Connecting to a Database</title>

<script type="text/javascript" src="AIRAliases.js"></script>

<script>
var db = new air.SQLConnection();

function doDbOpen(event)
{
 alert('You are now connected to the database.');
}

function doLoad()
{
 var file = air.File.applicationDirectory.resolvePath(
 'crm.db');

 db.addEventListener(air.SQLEvent.OPEN, doDbOpen);
 db.open(file, air.SQLMode.READ);
}
</script>

</head>
<body onLoad="doLoad();">

</body>
</html>

Create Database Tables

Problem

An application has a specific schema it needs to provide for
data storage.

144 | Chapter 4: Adobe AIR Mini-Cookbook

Solution

You can create a database schema using the SQLStatement class,
using SQL92 grammar.

Discussion

Once a database file has been created and a connection to the
database has been established, the next likely step will be to
create any required schema. You can do this using SQL92 in
conjunction with the SQLStatement class. The SQLStatement
class executes commands against a specified database.

Using an asynchronous approach, the best place to check for
any required schema—or to create it—is in the handler for the
SQLEvent.OPEN event. At this point, the application can be as-
sured a connection against which statements can be executed.
Along the same lines, event handlers must also be registered
on the SQLStatement instance:

var stmt = new air.SQLStatement();

stmt.addEventListener(air.SQLErrorEvent.ERROR, doStmtError);
stmt.addEventListener(air.SQLEvent.RESULT, doStmtResult);

When applied to a SQLStatement object, the SQLErrorE
vent.ERROR event is called when an error has occurred while
executing a SQLStatement.next() or SQLStatement.execute()
method. Conversely, the SQLEvent.RESULT event is called when
results are returned from the database. This usually indicates
a successful execution:

function doStmtError(event)
{
 alert('There has been a problem executing
 the statement.');
}

function doStmtResult(event)
{
 alert('The database table has
 been created.');
}

Embedded Database | 145

To execute a SQL statement, a SQLConnection instance against
which to execute must be established. You can assign a SQLCon
nection instance to the SQLStatement.sqlConnection property.
The SQLStatement.text property is then assigned any SQL that
needs to be executed. Finally, the SQLStatement.execute()
method is called:

stmt.sqlConnection = db;
stmt.text = 'CREATE TABLE IF NOT EXISTS contact (' +
 'id INTEGER PRIMARY KEY AUTOINCREMENT, ' +
 'first TEXT, ' +
 'last TEXT)';
stmt.execute();

In this case, a CREATE TABLE statement has been applied to the
database. Additional types of SQL statements, such as SELECT,
INSERT, UPDATE, and DELETE, are executed in the same manner.
The SQLStatement.execute() method can take two optional ar-
guments: the number of rows to prefetch, and a responder
object to handle events.

The prefetch option defaults to −1, which indicates that all rows
should be returned. The responder object can be a custom ob-
ject designed to handle any status or result events that take
place during execution. The default responder is null in this
case, as event handlers have been registered with the SQLState
ment object directly:

<html>
<head>

<title>Creating Database Tables</title>

<script type="text/javascript" src="AIRAliases.js"></script>

<script>
var db = null;
var stmt = null

function doDbOpen(event)
{
 stmt = new air.SQLStatement();
 stmt.addEventListener(air.SQLErrorEvent.ERROR,
doStmtError);

146 | Chapter 4: Adobe AIR Mini-Cookbook

 stmt.addEventListener(air.SQLEvent.RESULT, doStmtResult);

 stmt.sqlConnection = db;
 stmt.text = 'CREATE TABLE IF NOT EXISTS contact (' +
 'id INTEGER PRIMARY KEY
AUTOINCREMENT, ' +
 'first TEXT, ' +
 'last TEXT)';

 stmt.execute();
}

function doLoad()
{
 var file = air.File.applicationDirectory.resolvePath(
 'crm.db');

 db = new air.SQLConnection();
 db.addEventListener(air.SQLEvent.OPEN, doDbOpen);
 db.open(file, air.SQLMode.CREATE);
}

function doStmtResult(event)
{
 alert('The database table has been created.');
}

function doStmtError(event)
{
 alert('There has been a problem executing
 a statement:\n' + event.error.message);
}
</script>

</head>
<body onLoad="doLoad();">

</body>
</html>

Embedded Database | 147

Store Data in a Database

Problem

An application needs to store user-provided data in a relational
database on disk.

Solution

SQL92 INSERT statements can be created and executed using
the SQLStatement class.

Discussion

Given a valid database file with the appropriate schema cre-
ated, SQL92 statements can be executed using the SQLState
ment object. The same SQLStatement object can be reused to
execute multiple statements. When reusing the same SQLState
ment object, it is important to differentiate what type of state-
ment has just been executed. You can listen for the different
actions in various ways.

function doSave()
{
 var first = document.getElementById('txtFirst').value;
 var last = document.getElementById('txtLast').value;

 stmt.text = 'INSERT INTO contact VALUES (' +
 'NULL, ' +
 '\'' + first + '\', ' +
 '\'' + last + '\') ';
 stmt.execute();
}

One approach is to assign different event handlers for the dif-
ferent statements that will be executed. (Do not forget to
remove the old handlers.) Another approach is to specify dif-
ferent responder objects that have been created with the spe-
cific statement in mind. The approach used in this example is
a basic state machine that tracks what type of statement has
just been executed:

var NONE = - 1;
var CREATE_SCHEMA = 0;

148 | Chapter 4: Adobe AIR Mini-Cookbook

var INSERT_DATA = 1;

var state = NONE;

var stmt = new air.SQLStatement();

// Other database creation and configuration

function doSave()
{
 var first = document.getElementById('txtFirst').value;
 var last = document.getElementById('txtLast').value;

 stmt.text = 'INSERT INTO contact VALUES (' +
 'NULL, ' +
 '\' + first + '\', ' +
 '\'' + last + '\')';

 // Track state
 state = INSERT_DATA;
 stmt.execute();
}

After successfully executing a database statement, the SQLRe
sultEvent.RESULT event will be triggered. If an error occurs, the
SQLStatusEvent.STATUS event will be raised. By tracking the
state, the method designed to handle the result can determine
the appropriate action(s) to take. In the case of inserting new
data, this may be user notification and updating of the user
interface:

<html>
<head>

<title>Storing Data in a Database</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

Embedded Database | 149

<script type="text/javascript">
var db = null;
var stmt = null

var NONE = −1;
var CREATE_SCHEMA = 0;
var INSERT_DATA = 1;

var state = NONE;

function doDbOpen(event)
{
 stmt = new air.SQLStatement();
 stmt.addEventListener(air.SQLErrorEvent.ERROR,
doStmtError);
 stmt.addEventListener(air.SQLEvent.RESULT,
 doStmtResult);

 stmt.sqlConnection = db;
 stmt.text = 'CREATE TABLE IF NOT EXISTS contact (' +
 'id INTEGER PRIMARY KEY
AUTOINCREMENT, ' +
 'first TEXT, ' +
 'last TEXT)';

 state = CREATE_SCHEMA;
 stmt.execute();
}

function doLoad()
{
 var file = air.File.applicationDirectory.resolvePath(
 'crm.db');

 db = new air.SQLConnection();
 db.addEventListener(air.SQLEvent.OPEN, doDbOpen);
 db.open(file, air.SQLMode.CREATE);

 document.getElementById('btnSave').addEventListener(
 'click', doSave);
}

function doSave()
{
 var first = document.getElementById('txtFirst').value;
 var last = document.getElementById('txtLast').value;

150 | Chapter 4: Adobe AIR Mini-Cookbook

 stmt.text = 'INSERT INTO contact VALUES (' +
 'NULL, ' +
 '\'' + first + '\', ' +
 '\'' + last + '\')';

 state = INSERT_DATA;
 stmt.execute();
}

function doStmtResult(event)
{
 switch(state)
 {
 case CREATE_SCHEMA:
 alert('The database table has been created.');
 state = NONE;

 break;

 case INSERT_DATA:
 document.getElementById('txtFirst').value = '';
 document.getElementById('txtLast').value = '';

 alert('A new record has been stored.');
 }
}

function doStmtError(event)
{
 alert('There has been a problem executing a
 statement:\n' + event.error.message);
}
</script>

</head>
<body onLoad="doLoad();">

<div>
 First name: <input id="txtFirst" type="text" />
</div>
<div>
 Last name: <input id="txtLast" type="text" />
</div>
<div>
 <input id="btnSave" type="button" value="Save" />
</div>

Embedded Database | 151

</body>
</html>

Access Database Data

Problem

You need to generate a tabular display of data from the em-
bedded database.

Solution

Database data can be queried using SQL92 and the SQLState
ment class.

Discussion

You can run traditional SELECT statements using a SQLState
ment object that has been referenced against an existing data-
base. A successful execution of the SELECT statement invokes
the registered SQLResultEvent.RESULT event handler. That
event handler will get a SQLResultEvent object which contains
the result data:

function doStmtResult(event)
{
 var elem = null;
 var results = stmt.getResult();

 if(results.data != null)
 {
 for(var c = 0; c < results.data.length; c++)
 {
 elem = document.createElement('div');
 elem.innerText = results.data[c].first + ' '
+ results.data[c].last;

 document.body.appendChild(elem);
 }
 }
}

152 | Chapter 4: Adobe AIR Mini-Cookbook

NOTE
This snippet forgoes much of the state management,
event registration, and database connectivity covered in
other sections. Please review that content, or the exam-
ple at the end of this section, for complete coverage of
the topic.

To get any result data, SQLStatement.getResult() is called,
which returns a SQLResult object. The SQLResult.data property
is an Array of the results, if any. SQLResult.data Array will con-
tain Object instances whose properties match the names of the
columns used in the query. This Array can be used to iterate
over the results of a query.

If the database table that is being queried has no data, or the
statement did not return any data, the SQLResult.data property
will be null:

<html>
<head>

<title>Accessing Data in a Database</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

<script type="text/javascript">
var db = null;
var stmt = null

var NONE = −1;
var CREATE_SCHEMA = 0;
var SELECT_DATA = 1;

var state = NONE;

Embedded Database | 153

function doDbOpen(event)
{
 stmt = new air.SQLStatement();
 stmt.addEventListener(air.SQLErrorEvent.ERROR,
doStmtError);
 stmt.addEventListener(air.SQLEvent.RESULT, doStmtResult);

 stmt.sqlConnection = db;
 stmt.text = 'CREATE TABLE IF NOT EXISTS contact (' +
 'id INTEGER PRIMARY KEY
AUTOINCREMENT, ' +
 'first TEXT, ' +
 'last TEXT)';

 state = CREATE_SCHEMA;
 stmt.execute();
}

function doLoad()
{
 var file = air.File.applicationDirectory.resolvePath(
 'crm.db');

 db = new air.SQLConnection();
 db.addEventListener(air.SQLEvent.OPEN, doDbOpen);
 db.open(file, air.SQLMode.CREATE);
}

function doStmtResult(event)
{
 var elem = null;
 var result = null;

 switch(state)
 {
 case CREATE_SCHEMA:
 stmt.text = 'SELECT * FROM contact';

 state = SELECT_DATA;
 stmt.execute();

 break;

 case SELECT_DATA:
 result = stmt.getResult();

 if(result.data != null)

154 | Chapter 4: Adobe AIR Mini-Cookbook

 {
 for(var c = 0; c < result.data.length;
 c++)
 {
 elem = document.createElement('div');
 elem.innerText = result.data[c].first +
 ' ' + result.data[c].last;

 document.body.appendChild(elem);
 }
 }

 state = NONE;
 break;

 default:
 state = NONE;
 break;
 }
}

function doStmtError(event)
{
 alert('There has been a problem executing
 a statement:\n' + event.error.message);
}
</script>

</head>
<body onLoad="doLoad();">

</body>
</html>

Embedded Database | 155

Command-Line Arguments

Capture Command-Line Arguments

Problem

You need to capture command-line arguments sent to your
application—either at application startup or while the appli-
cation is running.

Solution

Register for the InvokeEvent, and capture command-line argu-
ments passed into your application.

Discussion

Whenever an application is started, or an application is called
from the command line while it is running, an InvokeEvent will
be broadcast. The event handler for this is passed information
about the event, including any arguments passed to the appli-
cation on the command line.

You should register for the InvokeEvent during your applica-
tion’s initialization phase, to ensure that the event is captured
when the application is initially launched.

You can register for the event from the NativeApplication sin-
gleton, like so:

function init()
{
air.NativeApplication.nativeApplication.addEventListener
(air.InvokeEvent.INVOKE,onInvoke);
}

This registers the onInvoke function as a handler for InvokeE
vent. The handler is passed an instance of the InvokeEvent ob-
ject, which contains a property named arguments which is an
Array of Strings of any arguments passed to the application:

function onInvoke(event)
{

156 | Chapter 4: Adobe AIR Mini-Cookbook

 air.trace("onInvoke : " + event.arguments);
}

When testing your application via ADL, you can pass in com-
mand-line arguments by using the -- argument. For example:

adl InvokeExample.xml -- foo "bim bam"

This would pass in two arguments to the application: foo and
bim bam.

The complete example follows; it listens for the InvokeEvent,
and prints out to the included textarea HTML control, as well
as the command line via air.trace():

<html>
<head>

 <script src="AIRAliases.js" />
 <script type="text/javascript">

 function onInvoke(event)
 {
 air.trace("onInvoke : " + event.arguments);

 var field = document.getElementById("outputField");
 field.value += "Invoke : " + event.arguments + "\n";
 }

 function init()
 {
air.NativeApplication.nativeApplication.addEventListener(air.
InvokeEvent.INVOKE,onInvoke);
 }

 </script>

</head>

<body onload="init()">

 <textarea rows="8" cols="40" id="outputField">
 </textarea>

</body>
</html>

Command-Line Arguments | 157

Networking

Communicate on a Socket

Problem

You would like to communicate with a server using a protocol
that is not directly supported by Adobe AIR (e.g., communi-
cate with an FTP server).

Solution

Use the Socket class in the AIR API to send binary or text data
to the server and register for events that will alert you to in-
coming data from the server.

Discussion

When communicating using protocols other than those di-
rectly supported by Adobe AIR, you may need to use the Socket
API. The Socket API is an asynchronous API that lets you send
data to a persistent socket endpoint and receive data from it in
real time. You do not need to create a new Socket instance for
each set of data sent to the same endpoint. The connection can
be kept alive for the entire conversation between your client
and the service to which you’re connecting. This is the typical
flow when using the Socket API:

1. Create a connection to the endpoint.

2. Listen for notification of connection success or failure.

3. Queue data that will be sent to the endpoint.

4. Send the data to the endpoint.

5. Listen for data incoming from the endpoint.

6. Repeat steps 3 through 5.

7. Close the connection.

The first step is to create a connection to the socket endpoint
that consists of a host and a port number. For example, to

158 | Chapter 4: Adobe AIR Mini-Cookbook

connect to an endpoint the host might be foo.com (http://
foo.com) and the port number might be 5555. Create the in-
stance of the Socket class and connect to the endpoint using
that information. At this time, we will also set up our listeners
to listen for the different events that the Socket can dispatch:

var socket = new air.Socket();
socket.addEventListener(air.Event.CONNECT, onSocketOpen);
socket.addEventListener(air.ProgressEvent.SOCKET_DATA,
onSocketData);
socket.connect('foo.com', 5555);

We will also need to create the functions to handle the events
for which we subscribed. The first event is the air.Event.CON
NECT event. This event will tell us when the socket has been
initiated and when communication with the service behind the
endpoint is possible. In this example, we are sending the bytes
of a UTF-8 encoded string to the service:

function onSocketOpen(event)
{
 // This queues up the binary representation of the
 // string 'Bob' in UTF-8 format to be sent to the
 // endpoint.
 socket.writeUTFBytes("Bob");

 // Send the actual bytes to the server and clear
 // the stream. We then wait for data to be sent
 // back to us.
 socket.flush();
}

The air.ProgressEvent.SOCKET_DATA event is dispatched when-
ever data is received. The service we are connecting to uses a
simple protocol: we send a UTF-8 encoded string and it returns
a UTF-8 encoded string. This makes accessing the data sent
back to us very simple. To access this data, we measure the
total number of bytes of data available on the Socket and read
that many bytes as a UTF-8 encoded string using the readUTF
Bytes() method of the Socket class.

function onSocketData(event)
{
 var data =
 socket.readUTFBytes(socket.bytesAvailable);

Networking | 159

http://foo.com
http://foo.com
http://foo.com

 air.trace(data); // Hello Bob
}

In our example, the protocol of communication was just a sin-
gle string. In some cases, depending on the service with which
you’re communicating, you may need to send and receive other
data types. The Socket class provides methods for reading and
writing many data types, such as ints, Booleans, floats, and
more. For example, if we were talking with a fictional service
that required us to send a Boolean followed by an int, our
onSocketOpen function in the preceding example could look like
this:

function onSocketOpen(event)
{
 // First send the boolean
 socket.writeBoolean(true);
 // Now send an int
 socket.writeInt(10);

 // Now we send the bytes to the service and
 // clear the buffer.
 socket.flush();
}

This example provides a baseline of functionality that can be
expanded upon to speak to many different protocols. The only
current limitation is that there is not currently an SSL Socket
implementation in AIR. For secure communication you will be
limited to HTTPS:

<html>
<head>

<title>Communicating on a Socket</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
var socket = null;

function init()
{
 socket = new air.Socket();

160 | Chapter 4: Adobe AIR Mini-Cookbook

 // Create our listeners which tell us when the Socket
 // is open and when we receive data from our service.
 socket.addEventListener(air.Event.CONNECT,
 onSocketOpen);
 socket.addEventListener(air.ProgressEvent.SOCKET_DATA,
 onSocketData);

 // Connect to our service, which is located at
 // host foo.com using port 5555.
 socket.connect('foo.com', 5555);
}

function onSocketOpen(event)
{
 // This queues up the binary representation of the
 // string 'Bob' in UTF-8 format to be sent to the
 // endpoint.
 socket.writeUTFBytes("Bob");

 // Send the actual bytes to the server and clear
 // the stream. We then wait for data to be sent
 // back to us.
 socket.flush();
}

function onSocketData(event)
{
 var data = socket.readUTFBytes(socket.bytesAvailable);
 air.trace(data); // Hello Bob
}
</script>

</head>
<body onload="init()">
</body>
</html>

Upload a File in the Background

Problem

The application user has created numerous files offline, and
you now want to send those to the server without blocking the
user from doing any additional work.

Networking | 161

Solution

The File class in Adobe AIR provides an upload() method that
is designed specifically for this purpose, without having to cre-
ate and manage HTML forms.

Discussion

The File.upload() method can upload files via HTTP/S to a
server for additional processing. The upload takes places just
like a traditional multipart file upload from an HTML form,
but without the need to manipulate forms on the client. The
upload process also takes place asynchronously in the back-
ground, allowing the application to continue processing with-
out interruption.

NOTE
The implementation of the receiving server is beyond the
scope of this example. Numerous technologies, and tu-
torials for these technologies, elegantly handle file up-
load. You’re encouraged to investigate your options.

The primary events that are useful are ProgressEvent.PRO
GRESS and Event.COMPLETE. These events handle notifying the
application of upload progress, and when an individual upload
is complete, respectively:

var file =
new air.File.documentsDirectory.
resolvePath('myImage.jpg');

file.addEventListener(air.ProgressEvent.PROGRESS,
doProgress);
file.addEventListener(air.Event.COMPLETE,
doComplete);

ProgressEvent contains various properties that can help in re-
flecting upload progress in the user interface. The most notable
of these properties are ProgressEvent.bytesLoaded and Progres
sEvent.bytesTotal, which show how much of the file has been

162 | Chapter 4: Adobe AIR Mini-Cookbook

uploaded and the total size of the file. Event.COMPLETE is broad-
cast once the upload is complete.

To start the upload, you first need a valid File object that
points to a resource on disk.

Once a valid file reference is established, developers will want
to call the File.upload() method. The File.upload() method
can take three arguments, the first of which is a URLRequest
object that contains information about where the file should
be sent. The URLRequest object can also contain additional data
to be passed to the receiving server. This additional data man-
ifests itself as HTML form fields might during a traditional
multipart file upload:

var request = new air.URLRequest(
'http://www.mydomain.com/upload');
file.upload(request, 'image', false);

The second argument provided to the File.upload() method
call is the name of the form field that contains the file data.

The third argument is a Boolean value that tells the upload
process whether it should try a test before sending the actual
file. The test upload will POST approximately 10 KB of data to
the endpoint to see if the endpoint responds. If the service
monitoring capabilities of Adobe AIR are not being used, this
is a good way to check for potential failure of the process.

NOTE
More than one great web application has been caught
by this subtlety. If the server is expecting the file data
outright, a test upload will almost assuredly cause an
error. If you intend to use the test facility, be sure that
your server code is prepared to handle the scenario.

function doProgress(event)
{
 var pct = Math.ceil((event.bytesLoaded / event.
bytesTotal) * 100);
 document.getElementById('progress').innerText =

Networking | 163

 pct + "%";
}

The Event.COMPLETE event is relatively straightforward in that
it signals the completion of the upload process. This is a good
place to perform any filesystem maintenance that the applica-
tion might otherwise need to accomplish. An example would
be removing the just-uploaded file from the local disk to free
up space. Another task that might be accomplished in the
Event.COMPLETE handler is to start the upload of subsequent
files:

<html>
<head>

<title>Uploading a File in the Background</title>

<style type="text/css">
body {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 11px;
 color: #0B333C;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></script>

<script type="text/javascript">
var UPLOAD_URL = 'http://www.ketnerlake.com/work/watcher/
upload.cfm';

var file = null;

function doComplete(e)
{
 document.getElementById('progress').style.visibility =
'hidden';
 document.getElementById('progress').innerText =
'Uploading... 0%';

 document.getElementById('upload').disabled = null;
}

function doLoad()
{
 file = air.File.desktopDirectory;

164 | Chapter 4: Adobe AIR Mini-Cookbook

 file.addEventListener(air.Event.SELECT, doSelect);
 file.addEventListener(air.ProgressEvent.
 PROGRESS, doProgress);
 file.addEventListener(air.Event.
 COMPLETE, doComplete);

 document.getElementById('upload').
 addEventListener('click', doUpload);
}

function doProgress(e)
{
 var loaded = e.bytesLoaded;
 var total = e.bytesTotal;
 var pct = Math.ceil((loaded / total) * 100);

 document.getElementById('progress').innerText =
'Uploading... ' +
 pct.toString() + '%';
}

function doSelect(e)
{
 var request = new air.URLRequest(UPLOAD_URL);

 request.contentType = 'multipart/form-data';
 request.method = air.URLRequestMethod.POST;

 document.getElementById('upload').disabled = 'disabled';
 document.getElementById('progress').style.visibility =
'visible';

 file.upload(request, 'image', false);
}

function doUpload()
{
 file.browseForOpen('Select File');
}
</script>

</head>
<body onLoad="doLoad();">

<input id="upload" type="button" value="Upload" />
<div id="progress" style="visibility: hidden">Uploading...
0%</div>

Networking | 165

</body>
</html>

Sound

Play a Sound

Problem

You need to play a sound in your application.

Solution

Use the Sound API within AIR to play an MP3 file.

Discussion

AIR includes complete support for accessing Flash Player APIs
from JavaScript. This includes the Sound class that can be used
to play local or remote MP3 files.

Playing a sound is simple, and requires two main steps:

1. Create a URLRequest instance that references the local or
remote sound.

2. Pass the URLRequest to the Sound instance, and play it.

Here is the relevant code snippet:

var soundPath =
 new air.URLRequest("app-resource:/sound.mp3");
var s = new air.Sound();
 s.load(soundPath);
 s.play();

First, we create a URLRequest that points to the location of the
MP3 file we will play. In this case, we use an app-resource URI
that references the sound.mp3 file contained in the application
install directory. You can also use any valid URI, including
both file and HTTP URIs:

166 | Chapter 4: Adobe AIR Mini-Cookbook

var soundPath =
 new air.URLRequest("app:/sound.mp3");

We then create an instance of the Sound class, pass the reference
to the MP3 path, and then call play:

var s = new air.Sound();
 s.load(soundPath);
 s.play();

Here is the complete example with a Play button:

<html>
<head>

 <script src="AIRAliases.js" />
 <script type="text/javascript">

 function playSound()
 {
 var soundPath =
 new air.URLRequest("app:/sound.mp3");
 var s = new air.Sound();
 s.load(soundPath);
 s.play();
 }
 </script>

</head>

<body>
 <input type="button" value="Play" onClick="playSound()">
</body>
</html>

At this point, you should have a solid understanding of Adobe
AIR, how to build AIR applications, and how to work with AIR
APIs. Make sure to check the resources listed in the Preface to
learn more advanced Adobe AIR development techniques.

Sound | 167

APPENDIX

AIR JavaScript Aliases

Table A-1 through Table A-15 show the JavaScript aliases cre-
ated in AIRAliases.js and the AIR and Flash Player APIs to
which they correspond.

NOTE
All non-aliased ActionScript APIs are accessed through
the window.runtime property in JavaScript.

Table A-1. Top-level aliases

Alias ActionScript API

air.trace trace

air.navigateToURL flash.net.navigateToURL

air.sendToURL flash.net.sendToURL

Table A-2. File aliases

Alias ActionScript API

air.File flash.filesystem.File

air.FileStream flash.filesystem.FileStream

air.FileMode flash.filesystem.FileMode

169

Table A-3. Event aliases

Alias ActionScript API

air.AsyncErrorEvent flash.eventsAsyncErrorEvent

air.BrowserInvokeE
vent

flash.events.BrowserInvokeEvent

air.DataEvent flash.events.DataEvent

air.DRMAuthenticateE
vent

flash.events.DRMAuthenticateE
vent

air.DRMStatusEvent flash.events.DRMStatusEvent

air.Event flash.events.Event

air.EventDispatcher flash.events.EventDispatcher

air.FileListEvent flash.events.FileListEvent

air.HTTPStatusEvent flash.events.HTTPStatusEvent

air.IOErrorEvent flash.events.IOErrorEvent

air.InvokeEvent flash.events.InvokeEvent

air.NetStatusEvent flash.events.NetStatusEvent

air.OutputProgressE
vent

flash.events.OutputProgressE
vent

air.ProgressEvent flash.events.ProgressEvent

air.SecurityErrorE
vent

flash.events.SecurityErrorEvent

air.StatusEvent flash.events.StatusEvent

air.TimerEvent flash.events.TimerEvent

air.ActivityEvent flash.events.ActivityEvent

Table A-4. Native window aliases

Alias ActionScript API

air.NativeWindow air.NativeWindow = flash.dis
play.NativeWindow

170 | Appendix: AIR JavaScript Aliases

Alias ActionScript API

air.NativeWindowDis
playState

flash.display.NativeWindowDis
playState

air.NativeWindowIni
tOptions

flash.display.NativeWindowInitOp
tions

air.NativeWindowSys
temChrome

flash.display.NativeWindowSystem
Chrome

air.NativeWindowRe
size

flash.display.NativeWindowResize

air.NativeWindowType flash.display.NativeWindowType

air.NativeWindow
BoundsEvent

flash.events.NativeWindowBoundsE
vent

air.NativeWindowDis
playStateEvent

flash.events.NativeWindowDisplayS
tateEvent

Table A-5. Geometry aliases

Alias ActionScript API

air.Point flash.geom.Point

air.Rectangle flash.geom.Rectangle

air.Matrix flash.geom.Matrix

Table A-6. Network aliases

Alias ActionScript API

air.FileFilter flash.net.FileFilter

air.LocalConnection flash.net.LocalConnection

air.NetConnection flash.net.NetConnection

air.URLLoader flash.net.URLLoader

air.URLLoaderDataFormat flash.net.URLLoaderDataFormat

air.URLRequest flash.net.URLRequest

air.URLRequestDefaults flash.net.URLRequestDefaults

AIR JavaScript Aliases | 171

Alias ActionScript API

air.URLRequestHeader flash.net.URLRequestHeader

air.URLRequestMethod flash.net.URLRequestMethod

air.URLStream flash.net.URLStream

air.URLVariables flash.net.URLVariables

air.Socket air.Socket = flash.net.Socket

air.XMLSocket flash.net.XMLSocket

air.Responder flash.net.Responder

air.ObjectEncoding flash.net.ObjectEncoding

Table A-7. System aliases

Alias ActionScript API

air.Capabilities flash.system.Capabilities

air.System flash.system.System

air.Security flash.system.Security

air.Updater flash.desktop.Updater

Table A-8. Desktop aliases

Alias ActionScript API

air.Clipboard flash.desktop.Clipboard

air.ClipboardFormats flash.desktop.ClipboardFormats

air.ClipboardTransfer
Mode

flash.desktop.ClipboardTrans
ferMode

air.NativeDragManager flash.desktop.NativeDragMan
ager

air.NativeDragOptions flash.desktop.NativeDragOp
tions

air.NativeDragActions flash.desktop.NativeDragAc
tions

air.Icon flash.desktop.Icon

172 | Appendix: AIR JavaScript Aliases

Alias ActionScript API

air.DockIcon flash.desktop.DockIcon

air.InteractiveIcon flash.desktop.InteractiveIcon

air.NotificationType flash.desktop.NotificationType

air.SystemTrayIcon flash.desktop.SystemTrayIcon

air.NativeApplication flash.desktop.NativeApplica
tion

Table A-9. Display aliases

Alias ActionScript API

air.NativeMenu flash.display.NativeMenu

air.NativeMenuItem flash.display.NativeMenuItem

air.Screen flash.display.Screen

air.Loader flash.display.Loader

air.Bitmap flash.display.Bitmap

air.BitmapData flash.display.BitmapData

Table A-10. UI aliases

Alias ActionScript API

air.Keyboard flash.ui.Keyboard

air.KeyLocation flash.ui.KeyLocation

air.Mouse flash.ui.Mouse

Table A-11. Utility aliases

Alias ActionScript API

air.ByteArray flash.utils.ByteArray

air.CompressionAlgor
ithm

flash.utils.CompressionAlgor
ithm

air.Endian flash.utils.Endian

air.Timer flash.utils.Timer

AIR JavaScript Aliases | 173

Alias ActionScript API

air.XMLSignatureValida
tor

flash.security.XMLSignature

Validator

Table A-12. HTML aliases

Alias ActionScript API

air.HTMLLoader flash.html.HTMLLoader

air.HTMLPDFCapability flash.html.HTMLPDFCapability

Table A-13. Media aliases

Alias ActionScript API

air.ID3Info flash.media.ID3Info

air.Sound flash.media.Sound

air.SoundChannel flash.media.SoundChannel

air.SoundLoaderContext flash.media.SoundLoaderContext

air.SoundMixer flash.media.SoundMixer

air.SoundTransform flash.media.SoundTransform

air.Microphone flash.media.Microphone

air.Video flash.media.Video

air.Camera flash.media.Camera

Table A-14. Data aliases

Alias ActionScript API

air.EncryptedLocalStore flash.data.EncryptedLocalStore

air.SQLCollationType flash.data.SQLCollationType

air.SQLColumnNameStyle flash.data.SQLColumnNameStyle

air.SQLColumnSchema flash.data.SQLColumnSchema

air.SQLConnection flash.data.SQLConnection

air.SQLError flash.errors.SQLError

174 | Appendix: AIR JavaScript Aliases

Alias ActionScript API

air.SQLErrorEvent flash.events.SQLErrorEvent

air.SQLErrorOperation flash.errors.SQLErrorOperation

air.SQLEvent flash.events.SQLEvent

air.SQLIndexSchema flash.data.SQLIndexSchema

air.SQLMode flash.data.SQLMode

air.SQLResult flash.data.SQLResult

air.SQLSchema flash.data.SQLSchema

air.SQLSchemaResult flash.data.SQLSchemaResult

air.SQLStatement flash.data.SQLStatement

air.SQLTableSchema flash.data.SQLTableSchema

air.SQLTransactionLock
Type

flash.data.SQLTransactionLock
Type

air.SQLTriggerSchema flash.data.SQLTriggerSchema

air.SQLUpdateEvent flash.events.SQLUpdateEvent

air.SQLViewSchema flash.data.SQLViewSchema

Table A-15. Service Monitor aliases

Alias ActionScript API

air.ServiceMonitor air.net.ServiceMonitor

air.SocketMonitor air.net.SocketMonitor

air.URLMonitor air.net.URLMonitor

AIR JavaScript Aliases | 175

Index

Symbols
-- argument, 157

A
ACID transactions, 142
ActionScript 3, 8

JavaScript, leveraging
compiled libraries
and, 76

script bridging and, 10
AC_RunActiveContent.js, 84
addEventListener() method,

109
ADL command-line tool, 17,

20, 24
launching applications

with, 36
Adobe AIR, 6

functionality, 12
getting stated, 19
primary technologies and,

7–18

Adobe AIR runtime, 20
Adobe AIR SDK, 20

installing, 25
setting up, 24–29

Adobe AIR Uninstaller (Mac),
24

ADT command-line tool, 17,
20, 25

creating AIR files with, 42
AIR files, 40

testing and installing, 46
.air files, 84
AIR Introspector, 79
air namespace, 75
air.Event.CONNECT event,

159
air.ProgressEvent.SOCKET_

DATA event, 159
air.trace() method, 157
AIRAliases.js, 74
AIRAliases.js file, 83
AIRIntrospector.js, 80

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

177

airversion parameter (badge
installer), 84

Ajax, 2, 57, 112
alert() function, 57
Alpha version, installing, 21
Apollo AIR, 1
app-storage:/ URI, 54
app:/ URI, 54

application sandboxes
and, 61

Apple, 50
application sandboxes, 61
application/x-

vnd.adobe.air.file-list
MIME type, 138

applications, 30
chrome, 88–91
creating, 30–36
deployment, 83–88
packaging and deploying,

40–47
technologies, primary, 7
testing, 36
troubleshooting, 78–81
web, 1–4

appname parameter (badge
installer), 84

appurl parameter (badge
installer), 84

Aptana Studio, 20
asynchronously reading text,

108

B
back button (browser), 4
badge installers, 84
badge.swf, 84
.bashrc file, 28

Beta versions, installing, 21
bin directory, installing

command-line tools,
25

Bitmap MIME type (image/x-
vnd.adobe.air.bitmap),
138

BooleanS data type, 160
browseForDirectory()

method, 117, 125
browseForOpen() method,

120
browseForOpenMultiple()

method, 123
browsers

Ajax and, 57
problems with

applications, 4
security models and, 15
web applications and, 1

buttoncolor parameter (badge
installer), 84

C
CA (Certification authority),

42
canvas object, 58
CERTFILE option (ADT), 43
Certification authority (CA),

42
chrome (application), 88–91
clipboard object, 13, 58
clipboardData object, 59
Coda (Panic), 20
command-line tools, 17, 20

arguments, 156–158
setting up, 24–29

178 | Index

COMMONNAME option
(ADT), 43

confirm() function, 57
cookies, 55
copy event (clipboard object),

58
CREATE TABLE statement,

146
createRootWindow()

function, 56
createTempFile() method,

115
cross-domain content

loading, 63
cross-platform deployment,

16
CSS, 7
cut event (clipboard object),

58

D
data:// scheme, 54
databases, 142–156

accessing data, 152–156
connecting, 142
storing data, 148–152
tables, creating, 144–148

dataTransfer property, 59
default_badge.html, 84
DELETE statement, 146
deployment (application),

83–88
description element

(application descriptor
files), 32

desktop applications, 1, 5
development toolset, 16
dialogs (HTML), 57

directories
browsing, 125–127
iterating contents of, 117–

120
.dmg files, 23

installing Adobe AIR SDK,
25

Document Object Model
(DOM), 7

document.write(), 63
Dojo Toolkit, 68
DOM (Document Object

Model), 7
dominitialize event, 66
drag event, 59
dragend event, 59
dragenter event, 59
dragleave event, 59
dragover event, 59
dragstart event, 59
Dreamweaver (Adobe), 20

AIR applications, testing,
36

drop event, 59
drop-and-drag, 5, 13, 59

HTML, using, 136–142
dropEffect property, 138

E
effectAllowed property, 138
Environment Variables

(Windows), installing
command-line tools
and, 26

error messages (JavaScript),
78

errors (runtime), 38
eval() function, 63

Index | 179

event listeners, 79
Event.COMPLETE event,

110, 162
Event.SELECT property, 125
Ext JS 2.0.2, 68

F
FCKeditor, 68
feed:// scheme, 54
File API, 101–120

temporary files, creating,
115

File class, 101
asynchronously reading

text, 108
browsing for files, 120
directories, iterating

contents of, 117
synchronously reading

text, 104
uploading files, 162–166
XML files, loading data

from, 112
File list MIME type

(application/x-
vnd.adobe.air.file-list),
138

File.browseForDirectory()
method, 117, 125

File.browseForOpen()
method, 120

File.browseForOpenMultiple
() method, 123

File.createTempFile()
method, 115

File.getDirectoryListing()
method, 117

File.isDirectory property, 118

File.moveTo() method, 115
File.moveToAsync() method,

115
File.resolvePath() method,

143
File.systemCharset class, 102
File.upload() method, 163
file:// scheme, 53
FileFilter object, 120
FileMode.APPEND property,

102, 109
FileMode.READ property,

109
FileMode.UPDATE property,

109
FileMode.WRITE property,

102, 109
filename element (application

descriptor files), 32
FileStream class, 101

asynchronously reading
text, 108

synchronously reading
text, 104

FileStream.open() method,
104

FileStream.openAsync()
method, 108

FileStream.readUTF()
method, 106

FileStream.readUTFBytes()
method, 106

Flash Player, 8
events, working with, 73
JavaScript, access APIs, 72
web applications and, 2

flash.system.System class, 72
floatS data type, 160

180 | Index

frame tag, 64
FTP servers, 158
full-screen windows, 98–101

G
getDirectoryListing()

method, 117
getResult() method, 153

H
height window property, 92
HTML, 7, 10, 20, 49–81

drop-and-drag
applications with,
136–142

MIME types, 138
root application files,

creating, 34
script bridging and, 10
simple applications,

creating, 29–36
HTMLLoader class, 94

full-screen windows, 99
htmlLoader property

(JavaScript), 70
HTMLLoader.load()

method, 96
http:// scheme, 53
https:// scheme, 53

I
I/O API, 13

security and, 15
iframe tag, 64
image/x-

vnd.adobe.air.bitmap
MIME type, 138

imageurl parameter (badge
installer), 84

initialWindow tag, 32
INSERT statement, 146, 148
installation, 23
internet applications, 1–4
intS data type, 160
InvokeEvent, 156
IOError class, 116

J
Jabber server, 130
JavaScript, 7, 20, 49–81, 52

aliases, 169
APIs, accessing from, 69
drop-and-drag,

implementing, 136
error messages, 78
frameworks, using, 68–78
low-level integration and,

10
remote files, loading, 62
runtime errors, 38
simple applications,

creating, 29
window.open() method,

91
javascript: scheme, 54
jQuery, 68

K
KEYTYPE option (ADT), 43
-khtml-user-drag:element

style, 137
-khtml-user-drag:none style,

137

Index | 181

L
lib directory, installing

command-line tools,
25

low-level integration, 10
lowest common denominator

of features, 6
ls command, 28

M
Mac

command-line tools,
installing, 28

uninstalling Adobe AIR
on, 22, 24

mailto: scheme, 53
maximizable element

(application descriptor
files), 33

menuing APIs, 13
messagecolor parameter

(badge installer), 84
MIME types, 47, 138
minimizable element

(application descriptor
files), 33

mobile devices, 51
MochiKit, 68
Mootools, 68
moveTo() method, 115
moveToAsync() method,

115

N
name element (application

descriptor files), 32

native windows, creating, 94–
98

NativeApplication object, 71
NativeWindow class, 88
nativeWindow property, 88
nativeWindow property

(JavaScript), 70
NativeWindow.close(), 89
NativeWindow.minimize(),

89
NativeWindowInitOptions

class, 95
full-screen windows,

creating, 99
NativeWindwoSystemChrom

e class, 99
networking, 158–166
Nokia, 50
non-application sandboxes,

61
developing and creating,

64

O
onload event, 35
open() method, 102, 104
openAsync() method, 108
operating systems, supported,

21
output from applications,

capturing, 38–40

P
"pass by reference" (script

bridging), 11
PASSWORD option (ADT),

43

182 | Index

paste event (clipboard object),
58

PATH variables, installing
command-line tools
and, 26

PDF (Portable Document
Format), 9

plug-ins, 59
.profile file, 28
ProgressEvent.PROGRESS

event, 110, 162
prompt() function, 57

R
readUTF() method, 106
readUTFBytes() method,

106
relative URLs, 55
resizable element (application

descriptor files), 33
resizable window property,

92
resolvePath() method, 101,

105
RIAs (Rich Internet

Applications), 1
root application files

creating, 34
root content files, 30
runtime directory, installing

command-line tools,
25

runtime errors, 38
runtime property (JavaScript),

70
runtime.trace, 39

S
Safari web browser, 51
Sandbox Box, 65
sandboxes, 54, 61

developing within, 62–68
sandboxRoot property, 65
Scalable Vector Graphics

(SVG), 60
script bridging, 10
script tag, 130
script.src, 63
scrollbars window property,

92
security models, 14–16, 49,

60–68
SELECT statements, 152
self-signed certificates, 41
setDragImage method, 139
setInterval() function, 63
setTimeout() function, 63
Socket class, 158
SocketMonitor class, 130
SocketMonitor.start()

method, 131
Sound class, 166
Spry Prerelease, 68
SQL92, 142

tables, creating, 145
SQLConnection.open()

method, 143
SQLConnejction data type,

143
SQLErrorEvent.ERROR

event, 145
SQLEvent.OPEN event, 143
SQLEvent.RESULT event,

145

Index | 183

SQLite database, 142
SQLMode.CREATE event,

144
SQLResult.data array, 153
SQLResultEvent object, 152
SQLStatement object, 152
SQLStatement.execute()

method, 146
SQLStatement.getResult()

method, 153
SVG (Scalable Vector

Graphics), 60
SWF files, 34
synchronously reading text,

104
system paths, placing

command-line tools in,
26

systemChrome element
(initalWindow), 33

T
tables (database), creating,

144–148
Tamarin virtual machine, 8
temporary files, creating, 115
Terminal program (Mac),

installing command-
line tools, 28

text/html MIME type, 138
text/plain MIME type, 138
text/uri-list MIME type, 138
title element (initalWindow),

33
Tje tool, 80
toString() function, 40
totalMemory Flash Player

property, 72

trace() function, 40
transparent element

(initalWindow), 33
troubleshooting AIR

applications, 78

U
UI (user interfaces), 4
Uninstaller (Mac), 24
uninstalling, 21
Universal Resource Identifiers

(URIs), 53
unsupported functionality,

60
UPDATE statement, 146
uploading files, 161–166
URIs (Universal Resource

Identifiers), 53
URL MIME type (text/uri-

list), 138
URLMonitor class, 128
URLRequest instance, 166
user interfaces (UI), 4
UTF-8 encodings, 159

V
version element (application

descriptor files), 32
visible element (application

descriptor files), 33

W
W3C DOM Level 2 event

model, 73
web applications, 1–4

technologies, primary, 7
WebKit, 8, 10, 49–52

184 | Index

width window property, 92
window object, 88
window.open, 65
window.open() method, 91
window.print() method, 60
window.runtime property, 72
windowing, 91–101

full-screen, creating, 98–
101

windowing APIs, 13
Windows

command-line tools,
installing, 26

uninstalling Adobe AIR
on, 22, 24

windows (browser), 56
writeMultiByte() method,

102

X
XHTML, 7
XML

application descriptor
files, 30

loading data from, 112–
115

XMLHttpRequest object, 57
cross-domain content

loading, 63
XML files, loading data,

112
XMLHttpRequest.open()

method, 112

Y
YUI 2.5.1, 68

Z
z-ordering (window), 95
ZIP files, installing Adobe AIR

SDK, 25

Index | 185

	Table of Contents
	Preface
	Adobe AIR Runtime Naming Conventions
	What This Book Covers
	Errors and Errata
	Audience for This Book
	Who This Book Is For
	What Does This Book Assume?
	Who This Book Is Not For

	How This Book Is Organized
	How to Use This Book
	Conventions Used in This Book
	License and Code Examples
	Support and More Information
	Accessing the Book Online
	Online Adobe AIR Resources

	About the Authors
	Mike Chambers
	Daniel Dura
	Dragos Georgita
	Kevin Hoyt

	Acknowledgments

	Chapter 1. Introduction to Adobe AIR
	A Short History of Web Applications
	Problems with Delivering Applications via the Browser
	Conflicting UI
	Distance from the Desktop
	Primarily Online Experience
	Lowest Common Denominator

	Introducing Adobe AIR
	Primary Adobe AIR Technologies
	Primary Application Technologies
	HTML/JavaScript
	Adobe Flash

	Primary Document Technologies
	PDF
	HTML

	What Does an Adobe AIR Application Contain?
	Technology integration and script bridging

	Adobe AIR Functionality
	Adobe AIR APIs
	Adobe AIR desktop integration

	Security Model
	Adobe AIR Development Toolset
	Is Adobe AIR the End of Web Applications in the Browser?

	Chapter 2. Getting Started with Adobe AIR Development
	What Do You Need to Develop Adobe AIR Applications?
	Adobe AIR Runtime
	Adobe AIR SDK
	HTML/JavaScript IDE or Editor
	Supported Operating System

	Uninstalling Prerelease Versions of Adobe AIR
	Uninstalling on Windows
	Uninstalling on Mac

	Installing Adobe AIR
	Uninstalling Adobe AIR
	Uninstalling on Windows
	Uninstalling on an Mac

	Setting Up the Adobe AIR SDK and Command-Line Tools
	Installing the Adobe AIR SDK
	Placing the Command-Line Tools Within the System Path
	Windows
	Mac

	Creating a Simple AIR Application with HTML and JavaScript
	Creating the Application Files
	Understanding application descriptor files
	Creating the root application file
	Accessing Adobe AIR APIs

	Testing the Application
	Using ADL to Launch the Application
	Capturing Output from the Application at Runtime
	Runtime JavaScript errors
	runtime.trace

	Packaging and Deploying the AIR Application
	What Is an AIR File?
	Digitally Signing AIR Files
	Signing with a self-signed certificate
	Signing with a CA-issued certificate

	Creating an AIR File Using ADT
	Generating a self-signed certificate
	Generating an AIR file

	Testing and Installing the AIR File
	Deploying the AIR File
	Setting the MIME type

	Chapter 3. Working with JavaScript and HTML Within Adobe AIR
	WebKit Within Adobe AIR
	Why WebKit?
	Open project
	Proven technology that web developers know
	Minimum effect on AIR runtime size
	Proven ability to run on mobile devices

	WebKit version used within Adobe AIR

	JavaScript within Adobe AIR
	AIR Implementation of Functionality
	URI Schemes
	Supported URI schemes
	Unsupported URI schemes
	AIR URI Schemes

	Relative URLs
	Cookies
	Windowing
	Windows
	Dialogs

	XMLHttpRequest and Ajax
	Canvas object
	Clipboard object
	Drag and drop
	Supported plug-ins
	Unsupported functionality

	Security Model
	Why a different security model?
	Adobe AIR Sandboxes
	Application sandbox
	Non-application sandbox

	Developing within the Sandboxes
	Developing within the application sandbox
	Developing within the non-application sandbox
	Scripting between sandboxes

	Using JavaScript Frameworks
	JavaScript Frameworks and Libraries supporting AIR application sandbox
	Ajax frameworks and libraries compatible with AIR application sandbox at the time of authoring this book
	Accessing AIR APIs from JavaScript
	The JavaScript environment and its relationship with AIR
	Accessing AIR and Flash Player APIs
	Working with AIR and Flash Player Events
	Using AIRAliases.js file
	Leveraging Compiled ActionScript Libraries

	Troubleshooting AIR Applications
	New JavaScript error messages
	Security violation for Javascript code
	Referencing a JavaScript object no longer available
	Missing event listeners for error events

	AIR Introspector

	Chapter 4. Adobe AIR Mini-Cookbook
	Application Deployment
	Deploy from a Web Page
	Problem
	Solution
	Discussion

	Application Chrome
	Add Custom Controls
	Problem
	Solution
	Discussion
	application.xml
	index.html

	Windowing
	Create a New Window
	Problem
	Solution
	Discussion
	Login.html

	Create a New Native Window
	Problem
	Solution
	Discussion
	Login.html

	Create Full-Screen Windows
	Problem
	Solution
	Discussion

	File API
	Write Text to a File from a String
	Problem
	Solution
	Discussion

	Synchronously Read Text from a File
	Problem
	Solution
	Discussion

	Asynchronously Read Text from a File
	Problem
	Solution
	Discussion

	Load Data from an XML File
	Problem
	Solution
	Discussion
	Given
	Example

	Create a Temporary File
	Problem
	Solution
	Discussion

	Iterate the Contents of a Directory
	Problem
	Solution
	Discussion

	File Pickers
	Browse for a File
	Problem
	Solution
	Discussion

	Browse for Multiple Files
	Problem
	Solution
	Discussion

	Browse for a Directory
	Problem
	Solution
	Discussion

	Service and Server Monitoring
	Monitor Connectivity to an HTTP Server
	Problem
	Solution
	Discussion

	Monitor Connectivity to a Jabber Server
	Problem
	Solution
	Discussion

	Online/Offline
	Cache Assets for Offline Use
	Problem
	Solution
	Discussion

	Drag-and-Drop
	Use Drag—and-Drop from HTML
	Problem
	Solution
	Discussion

	Embedded Database
	Connect to a Database
	Problem
	Solution
	Discussion

	Create Database Tables
	Problem
	Solution
	Discussion

	Store Data in a Database
	Problem
	Solution
	Discussion

	Access Database Data
	Problem
	Solution
	Discussion

	Command-Line Arguments
	Capture Command-Line Arguments
	Problem
	Solution
	Discussion

	Networking
	Communicate on a Socket
	Problem
	Solution
	Discussion

	Upload a File in the Background
	Problem
	Solution
	Discussion

	Sound
	Play a Sound
	Problem
	Solution
	Discussion

	Appendix. AIR JavaScript Aliases
	Index

